#chart #plot #graph

charts

受 D3.js 启发的纯 Rust 可视化库

3 个版本 (破坏性更新)

0.3.0 2020年4月24日
0.2.0 2020年4月3日
0.1.0 2020年3月31日

135可视化 中排名

Download history • Rust 包仓库 64/week @ 2024-03-11 • Rust 包仓库 67/week @ 2024-03-18 • Rust 包仓库 72/week @ 2024-03-25 • Rust 包仓库 140/week @ 2024-04-01 • Rust 包仓库 64/week @ 2024-04-08 • Rust 包仓库 71/week @ 2024-04-15 • Rust 包仓库 71/week @ 2024-04-22 • Rust 包仓库 66/week @ 2024-04-29 • Rust 包仓库 62/week @ 2024-05-06 • Rust 包仓库 71/week @ 2024-05-13 • Rust 包仓库 59/week @ 2024-05-20 • Rust 包仓库 75/week @ 2024-05-27 • Rust 包仓库 92/week @ 2024-06-03 • Rust 包仓库 107/week @ 2024-06-10 • Rust 包仓库 114/week @ 2024-06-17 • Rust 包仓库 80/week @ 2024-06-24 • Rust 包仓库

每月下载量 402
用于 vim-profiler

MIT/Apache

380KB
2.5K SLoC

charts

受 D3.js 启发的纯 Rust 可视化库。

请参阅 图库示例 了解代码和更多图表。

Frequency Of English Letters

Revenue By Music Format

安装

您可以将此作为依赖项添加到您的 Cargo.toml 文件中

[dependencies]
charts = "0.3.0"

图表类型

该库支持以下图表(更多即将添加)

  1. 垂直柱状图
  2. 垂直堆积柱状图
  3. 水平柱状图
  4. 水平堆积柱状图
  5. 散点图
  6. 折线图
  7. 面积图
  8. 直方图(待定)
  9. 箱线图(待定)
  10. 其他(待定)

此外,还支持 组合图表(见以下组合图表)

构建块

以下是您创建图表所需的组件

  1. 刻度
  2. 视图
  3. 坐标轴
  4. 大小和边距
  5. 图例

前两个是基础组件,提供了在数据表示方式和组合数据以实现所需结果方面的灵活性,而目标是超越简单形式的数据可视化。

让我们深入了解每个构建块并定义其结构和 API,或者您可以直接前往示例部分,看看您可以使用 charts 建立什么。

1. 刻度

刻度是一个将数据从一维转换到另一维的实体。您正在转换的维度称为 ,您正在转换到的维度称为 范围。目前,charts 实现了两种类型的刻度

  1. 线性刻度
  2. 带状刻度

线性刻度

线性刻度是一个插值函数,它接受一个域(例如 [0, 10])和一个范围(例如 [0, 50]),并能够将域中的一个值转换到对应范围中的一个值(例如 5 -> 25)。

在使用线性刻度创建图表时,代表数据集中存在的值范围。例如,如果您有一个简单的数据集vec![123, 48, 232, 99],域表示为[48, 232](但它也可以表示为[40, 240][0, 1000],稍后将有更多介绍)。

相反,刻度的范围代表可渲染的音域。例如,如果您有一个宽度为800px,左右各有50px边距的图表(见下文边距),这意味着可渲染数据的可用范围为[0, 700]

因此,如果结合范围的概念,一个具有domain[0, 10]range[0, 500]的刻度,将所有从0到10的点映射到0到500像素的范围内。

带状刻度

带状刻度接受一组不同的值(例如,类别、年份)和一个连续的范围,并将域插值到范围中。它常用于条形图,其中需要将分类数据集映射到特定大小的连续轴。

例如,具有domain["苹果", "橙子", ""]range[0, 100]的带状刻度将"苹果"域映射到0"橙子"映射到33.33""映射到66.66。实际实现有一个inner_padding值,将在类别之间留下间隔,因此实际映射的值将略有不同。

2. 视图

由于相同的数据集可以以不同的形式表示,因此存在一个表示数据的特定表示的视图概念。

由于数据视图是在两个维度(在2D图表中)上的数据表示,因此每个视图都需要为其X轴和Y轴指定一个比例。

以下是可用的视图列表

  1. VerticalBarView
  2. HorizontalBarView
  3. ScatterView
  4. LineSeriesView
  5. AreaSeriesView

3. 轴

轴是可视化域范围的表示。这意味着为了正确显示轴,它应该与视图相同的比例一起操作。

作为用户,您不会明确创建轴,而是确定轴的位置(顶部、右侧、底部、左侧)以及该轴使用哪个比例。

4. 大小和边距

在创建图表时,您可以对其进行一定程度的外观定制。

您可以为图表设置宽度和高度以及边距(顶部、右侧、底部、左侧)。图表边距是图表边框的填充,定义了留给轴和其他与数据视图无关的元素的空间量。

例如,宽度为800px、高度为600px且边距为top: 100, right:40, bottom:50, left:60的图表将为实际数据表示留出700px宽、450px高的区域。

      width - 800
+-------------------------------------------------------+
|                        top                            |  h
|                        100                            |  e
|     +-------------------------------------------+     |  i
|     |                                           |     |  g
|left |                  Actual                   |right|  h
| 60  |                   Data                    | 40  |  t
|     |                   View                    |     |  
|     |                700 x 450                  |     |  6
|     |                                           |     |  0
|     |                                           |     |  0
|     +-------------------------------------------+     |
|                      bottom - 50                      |
+-------------------------------------------------------+

5. 图例

图例会自动填充到图表中每个视图所包含的条目。要向图表添加图例,请在图表实例上使用add_legend_at(position: AxisPosition)方法(不要忘记在底部留出足够的边距以显示图例)。

数据集的key值用作图例条目标签。如果数据集没有键值(即当数据集表示单一类型的数据时),您可以通过Viewset_custom_data_label(label: String)方法指定自定义标签。查看图表组成部分中散点图与两个数据集的示例。

示例

以下是一些当前支持的图表示例。

垂直柱状图

以下是示例代码

use charts::{Chart, VerticalBarView, ScaleBand, ScaleLinear};

fn main() {
    // Define chart related sizes.
    let width = 800;
    let height = 600;
    let (top, right, bottom, left) = (90, 40, 50, 60);

    // Create a band scale that maps ["A", "B", "C"] categories to values in the [0, availableWidth]
    // range (the width of the chart without the margins).
    let x = ScaleBand::new()
        .set_domain(vec![String::from("A"), String::from("B"), String::from("C")])
        .set_range(vec![0, width - left - right])
        .set_inner_padding(0.1)
        .set_outer_padding(0.1);

    // Create a linear scale that will interpolate values in [0, 100] range to corresponding
    // values in [availableHeight, 0] range (the height of the chart without the margins).
    // The [availableHeight, 0] range is inverted because SVGs coordinate system's origin is
    // in top left corner, while chart's origin is in bottom left corner, hence we need to invert
    // the range on Y axis for the chart to display as though its origin is at bottom left.
    let y = ScaleLinear::new()
        .set_domain(vec![0, 100])
        .set_range(vec![height - top - bottom, 0]);

    // You can use your own iterable as data as long as its items implement the `BarDatum` trait.
    let data = vec![("A", 90), ("B", 10), ("C", 30)];

    // Create VerticalBar view that is going to represent the data as vertical bars.
    let view = VerticalBarView::new()
        .set_x_scale(&x)
        .set_y_scale(&y)
        .load_data(&data).unwrap();

    // Generate and save the chart.
    Chart::new()
        .set_width(width)
        .set_height(height)
        .set_margins(top, right, bottom, left)
        .add_title(String::from("Bar Chart"))
        .add_view(&view)
        .add_axis_bottom(&x)
        .add_axis_left(&y)
        .add_left_axis_label("Units of Measurement")
        .add_bottom_axis_label("Categories")
        .save("vertical-bar-chart.svg").unwrap();
}

以下是结果

Vertical Bar Chart

类别显示顺序由传递给set_domain方法的向量定义。如果您将此顺序更改为"A, C, B",则结果顺序也会相应调整。

Vertical Bar Chart with changed domain order

您可以通过调整set_inner_paddingset_outer_padding的值来自定义图表的外观。

垂直堆积柱状图

简单的柱状图(如上面所示)是堆叠柱状图的一个特例,其中只有一个值类型。在底层,charts对这两种类型处理得几乎一样,这就是为什么代码几乎相同,唯一的区别是输入数据必须提供一个key,以便按此键分组和堆叠值。

use charts::{Chart, VerticalBarView, ScaleBand, ScaleLinear, BarLabelPosition};

fn main() {
    // Define chart related sizes.
    let width = 800;
    let height = 600;
    let (top, right, bottom, left) = (90, 40, 50, 60);

    // Create a band scale that maps ["A", "B", "C"] categories to values in [0, availableWidth]
    // range (the width of the chart without the margins).
    let x = ScaleBand::new()
        .set_domain(vec![String::from("A"), String::from("B"), String::from("C")])
        .set_range(vec![0, width - left - right]);

    // Create a linear scale that will interpolate values in [0, 100] range to corresponding
    // values in [availableHeight, 0] range (the height of the chart without the margins).
    // The [availableHeight, 0] range is inverted because SVGs coordinate system's origin is
    // in the top left corner, while chart's origin is in bottom left corner, hence we need to
    // invert the range on Y axis for the chart to display as though its origin is at bottom left.
    let y = ScaleLinear::new()
        .set_domain(vec![0, 100])
        .set_range(vec![height - top - bottom, 0]);

    // You can use your own iterable as data as long as its items implement the `BarDatum` trait.
    let data = vec![("A", 70, "foo"), ("B", 10, "foo"), ("C", 30, "foo"), ("A", 20, "bar"), ("A", 5, "baz")];

    // Create VerticalBar view that is going to represent the data as vertical bars.
    let view = VerticalBarView::new()
        .set_x_scale(&x)
        .set_y_scale(&y)
        // .set_label_visibility(false)  // <-- uncomment this line to hide bar value labels
        .set_label_position(BarLabelPosition::Center)
        .load_data(&data).unwrap();

    // Generate and save the chart.
    Chart::new()
        .set_width(width)
        .set_height(height)
        .set_margins(top, right, bottom, left)
        .add_title(String::from("Stacked Bar Chart"))
        .add_view(&view)
        .add_axis_bottom(&x)
        .add_axis_left(&y)
        .add_left_axis_label("Units of Measurement")
        .add_bottom_axis_label("Categories")
        .save("stacked-vertical-bar-chart.svg").unwrap();
}

结果

Vertical Stacked Bar Chart

默认情况下,输入数据中键的顺序决定了堆叠顺序。然而,您可以通过在调用 load_data() 方法之前,在 VerticalBarDataset 结构体上指定不同的顺序来调整它,使用 set_keys() 方法。

// Create VerticalBar view that is going to represent the data as vertical bars.
let view = VerticalBarView::new()
    .set_x_scale(&x)
    .set_y_scale(&y)
    .set_keys(vec![String::from("foo"), String::from("baz"), String::from("bar")])
    // .set_label_visibility(false)  // <-- uncomment this line to hide bar value labels
    .set_label_position(BarLabelPosition::Center)
    .load_data(&data).unwrap();

结果是如下所示(注意第一个柱状图中顺序的变化)

Vertical Stacked Bar Chart with custom keys order

散点图

use charts::{Chart, ScaleLinear, ScatterView, MarkerType, PointLabelPosition};

fn main() {
    // Define chart related sizes.
    let width = 800;
    let height = 600;
    let (top, right, bottom, left) = (90, 40, 50, 60);

    // Create a band scale that will interpolate values in [0, 200] to values in the
    // [0, availableWidth] range (the width of the chart without the margins).
    let x = ScaleLinear::new()
        .set_domain(vec![0, 200])
        .set_range(vec![0, width - left - right]);

    // Create a linear scale that will interpolate values in [0, 100] range to corresponding
    // values in [availableHeight, 0] range (the height of the chart without the margins).
    // The [availableHeight, 0] range is inverted because SVGs coordinate system's origin is
    // in top left corner, while chart's origin is in bottom left corner, hence we need to invert
    // the range on Y axis for the chart to display as though its origin is at bottom left.
    let y = ScaleLinear::new()
        .set_domain(vec![0, 100])
        .set_range(vec![height - top - bottom, 0]);

    // You can use your own iterable as data as long as its items implement the `PointDatum` trait.
    let scatter_data = vec![(120, 90), (12, 54), (100, 40), (180, 10)];

    // Create Scatter view that is going to represent the data as points.
    let scatter_view = ScatterView::new()
        .set_x_scale(&x)
        .set_y_scale(&y)
        .set_label_position(PointLabelPosition::E)
        .set_marker_type(MarkerType::Square)
        .load_data(&scatter_data).unwrap();

    // Generate and save the chart.
    Chart::new()
        .set_width(width)
        .set_height(height)
        .set_margins(top, right, bottom, left)
        .add_title(String::from("Scatter Chart"))
        .add_view(&scatter_view)
        .add_axis_bottom(&x)
        .add_axis_left(&y)
        .add_left_axis_label("Custom X Axis Label")
        .add_bottom_axis_label("Custom Y Axis Label")
        .save("scatter-chart.svg").unwrap();
}

结果

Scatter plot

您可以按照以下方式自定义外观和布局

选择标签相对于标记的显示方式。可用选项:N, NE, E, SE, S, SW, W, NW

选择点的标记类型。可用选项:方形,圆形,X

如果数据集有一个区分点的 key,您还可以使用 ScatterView 来显示它。

use charts::{Chart, ScaleLinear, ScatterView, MarkerType, Color, PointLabelPosition};

fn main() {
    // Define chart related sizes.
    let width = 800;
    let height = 600;
    let (top, right, bottom, left) = (90, 40, 50, 60);

    // Create a band scale that will interpolate values in [0, 200] to values in the
    // [0, availableWidth] range (the width of the chart without the margins).
    let x = ScaleLinear::new()
        .set_domain(vec![0, 200])
        .set_range(vec![0, width - left - right]);

    // Create a linear scale that will interpolate values in [0, 100] range to corresponding
    // values in [availableHeight, 0] range (the height of the chart without the margins).
    // The [availableHeight, 0] range is inverted because SVGs coordinate system's origin is
    // in top left corner, while chart's origin is in bottom left corner, hence we need to invert
    // the range on Y axis for the chart to display as though its origin is at bottom left.
    let y = ScaleLinear::new()
        .set_domain(vec![0, 100])
        .set_range(vec![height - top - bottom, 0]);

    // You can use your own iterable as data as long as its items implement the `PointDatum` trait.
    let scatter_data = vec![(120, 90, "foo"), (12, 54, "foo"), (100, 40, "bar"), (180, 10, "baz")];

    // Create Scatter view that is going to represent the data as points.
    let scatter_view = ScatterView::new()
        .set_x_scale(&x)
        .set_y_scale(&y)
        .set_label_position(PointLabelPosition::E)
        .set_marker_type(MarkerType::Circle)
        .set_colors(Color::color_scheme_dark())
        .load_data(&scatter_data).unwrap();

    // Generate and save the chart.
    Chart::new()
        .set_width(width)
        .set_height(height)
        .set_margins(top, right, bottom, left)
        .add_title(String::from("Scatter Chart"))
        .add_view(&scatter_view)
        .add_axis_bottom(&x)
        .add_axis_left(&y)
        .add_left_axis_label("Custom X Axis Label")
        .add_bottom_axis_label("Custom Y Axis Label")
        .save("scatter-chart-multiple-keys.svg").unwrap();
}

Scatter Chart with data with different keys

线系列

线系列支持散点图相同的函数。

use charts::{Chart, ScaleLinear, MarkerType, PointLabelPosition, LineSeriesView};

fn main() {
    // Define chart related sizes.
    let width = 800;
    let height = 600;
    let (top, right, bottom, left) = (90, 40, 50, 60);

    // Create a band scale that will interpolate values in [0, 200] to values in the
    // [0, availableWidth] range (the width of the chart without the margins).
    let x = ScaleLinear::new()
        .set_domain(vec![0_f32, 200_f32])
        .set_range(vec![0, width - left - right]);

    // Create a linear scale that will interpolate values in [0, 100] range to corresponding
    // values in [availableHeight, 0] range (the height of the chart without the margins).
    // The [availableHeight, 0] range is inverted because SVGs coordinate system's origin is
    // in top left corner, while chart's origin is in bottom left corner, hence we need to invert
    // the range on Y axis for the chart to display as though its origin is at bottom left.
    let y = ScaleLinear::new()
        .set_domain(vec![0_f32, 100_f32])
        .set_range(vec![height - top - bottom, 0]);

    // You can use your own iterable as data as long as its items implement the `PointDatum` trait.
    let line_data = vec![(12, 54), (100, 40), (120, 50), (180, 70)];

    // Create Line series view that is going to represent the data.
    let line_view = LineSeriesView::new()
        .set_x_scale(&x)
        .set_y_scale(&y)
        .set_marker_type(MarkerType::Circle)
        .set_label_position(PointLabelPosition::N)
        .load_data(&line_data).unwrap();

    // Generate and save the chart.
    Chart::new()
        .set_width(width)
        .set_height(height)
        .set_margins(top, right, bottom, left)
        .add_title(String::from("Line Chart"))
        .add_view(&line_view)
        .add_axis_bottom(&x)
        .add_axis_left(&y)
        .add_left_axis_label("Custom Y Axis Label")
        .add_bottom_axis_label("Custom X Axis Label")
        .save("line-chart.svg").unwrap();
}

Line Series

面积系列

目前,AreaSeriesView 不支持具有多个键的数据集,因此无法显示堆叠面积图。

use charts::{Chart, ScaleLinear, MarkerType, PointLabelPosition, AreaSeriesView};

fn main() {
    // Define chart related sizes.
    let width = 800;
    let height = 600;
    let (top, right, bottom, left) = (90, 40, 50, 60);

    // Create a band scale that will interpolate values in [0, 200] to values in the
    // [0, availableWidth] range (the width of the chart without the margins).
    let x = ScaleLinear::new()
        .set_domain(vec![12_f32, 180_f32])
        .set_range(vec![0, width - left - right]);

    // Create a linear scale that will interpolate values in [0, 100] range to corresponding
    // values in [availableHeight, 0] range (the height of the chart without the margins).
    // The [availableHeight, 0] range is inverted because SVGs coordinate system's origin is
    // in top left corner, while chart's origin is in bottom left corner, hence we need to invert
    // the range on Y axis for the chart to display as though its origin is at bottom left.
    let y = ScaleLinear::new()
        .set_domain(vec![0_f32, 100_f32])
        .set_range(vec![height - top - bottom, 0]);

    // You can use your own iterable as data as long as its items implement the `PointDatum` trait.
    let area_data = vec![(12, 54), (100, 40), (120, 50), (180, 70)];

    // Create Area series view that is going to represent the data.
    let area_view = AreaSeriesView::new()
        .set_x_scale(&x)
        .set_y_scale(&y)
        .set_marker_type(MarkerType::Circle)
        .set_label_position(PointLabelPosition::N)
        .load_data(&area_data).unwrap();

    // Generate and save the chart.
    Chart::new()
        .set_width(width)
        .set_height(height)
        .set_margins(top, right, bottom, left)
        .add_title(String::from("Area Chart"))
        .add_view(&area_view)
        .add_axis_bottom(&x)
        .add_axis_left(&y)
        .add_left_axis_label("Custom Y Axis Label")
        .add_bottom_axis_label("Custom X Axis Label")
        .save("area-chart.svg").unwrap();
}

Area Series Chart

图表组成

一旦您了解了基本构建块(主要是 刻度视图),那么您可以使用 charts 实现的内容就几乎是无限的(目前有可用的实现视图,:))。

主要思想是使用常见的刻度实例,这些实例作为不同数据集和视图之间的共同上下文。

一个例子是将柱状图和散点图结合起来

use charts::{Chart, VerticalBarView, ScaleBand, ScaleLinear, ScatterView, MarkerType, Color, PointLabelPosition};

fn main() {
    // Define chart related sizes.
    let width = 800;
    let height = 600;
    let (top, right, bottom, left) = (90, 40, 50, 60);

    // Create a band scale that maps ["A", "B", "C"] categories to values in the [0, availableWidth]
    // range (the width of the chart without the margins).
    let x = ScaleBand::new()
        .set_domain(vec![String::from("A"), String::from("B"), String::from("C")])
        .set_range(vec![0, width - left - right]);

    // Create a linear scale that will interpolate values in [0, 100] range to corresponding
    // values in [availableHeight, 0] range (the height of the chart without the margins).
    // The [availableHeight, 0] range is inverted because SVGs coordinate system's origin is
    // in top left corner, while chart's origin is in bottom left corner, hence we need to invert
    // the range on Y axis for the chart to display as though its origin is at bottom left.
    let y = ScaleLinear::new()
        .set_domain(vec![0, 100])
        .set_range(vec![height - top - bottom, 0]);

    // You can use your own iterable as data as long as its items implement the `BarDatum` trait.
    let bar_data = vec![("A", 70), ("B", 10), ("C", 30)];

    // You can use your own iterable as data as long as its items implement the `PointDatum` trait.
    let scatter_data = vec![(String::from("A"), 90.3), (String::from("B"), 20.1), (String::from("C"), 10.8)];

    // Create VerticalBar view that is going to represent the data as vertical bars.
    let bar_view = VerticalBarView::new()
        .set_x_scale(&x)
        .set_y_scale(&y)
        .load_data(&bar_data).unwrap();

    // Create Scatter view that is going to represent the data as points.
    let scatter_view = ScatterView::new()
        .set_x_scale(&x)
        .set_y_scale(&y)
        .set_label_position(PointLabelPosition::NE)
        .set_marker_type(MarkerType::Circle)
        .set_colors(Color::from_vec_of_hex_strings(vec!["#FF4700"]))
        .load_data(&scatter_data).unwrap();

    // Generate and save the chart.
    Chart::new()
        .set_width(width)
        .set_height(height)
        .set_margins(top, right, bottom, left)
        .add_title(String::from("Composite Bar + Scatter Chart"))
        .add_view(&bar_view)                            // <-- add bar view
        .add_view(&scatter_view)                        // <-- add scatter view
        .add_axis_bottom(&x)
        .add_axis_left(&y)
        .add_left_axis_label("Units of Measurement")
        .add_bottom_axis_label("Categories")
        .save("composite-bar-and-scatter-chart.svg").unwrap();
}

结果如下所示

Composite Bar and Scatter Chart

另一个例子是将不同的数据集结合起来。例如,我们可以定义覆盖两个数据集域的刻度,并查看它们之间的关系。

use charts::{Chart, ScaleLinear, ScatterView, MarkerType, PointLabelPosition, Color, AxisPosition};

fn main() {
    // Define chart related sizes.
    let width = 800;
    let height = 600;
    let (top, right, bottom, left) = (90, 40, 80, 60);

    // Create a band scale that will interpolate values in [0, 200] to values in the
    // [0, availableWidth] range (the width of the chart without the margins).
    let x = ScaleLinear::new()
        .set_domain(vec![0_f32, 200_f32])
        .set_range(vec![0, width - left - right]);

    // Create a linear scale that will interpolate values in [0, 100] range to corresponding
    // values in [availableHeight, 0] range (the height of the chart without the margins).
    // The [availableHeight, 0] range is inverted because SVGs coordinate system's origin is
    // in top left corner, while chart's origin is in bottom left corner, hence we need to invert
    // the range on Y axis for the chart to display as though its origin is at bottom left.
    let y = ScaleLinear::new()
        .set_domain(vec![0_f32, 100_f32])
        .set_range(vec![height - top - bottom, 0]);

    // You can use your own iterable as data as long as its items implement the `PointDatum` trait.
    let scatter_data_1 = vec![(20, 90), (12, 54), (25, 70), (33, 40)];
    let scatter_data_2 = vec![(120, 10), (143, 34), (170, 14), (190, 13)];

    // Create Scatter view that is going to represent the data as points.
    let scatter_view_1 = ScatterView::new()
        .set_x_scale(&x)
        .set_y_scale(&y)
        .set_marker_type(MarkerType::Circle)
        .set_label_position(PointLabelPosition::N)
        .set_custom_data_label("Apples".to_owned())
        .load_data(&scatter_data_1).unwrap();

    // Create Scatter view that is going to represent the data as points.
    let scatter_view_2 = ScatterView::new()
        .set_x_scale(&x)
        .set_y_scale(&y)
        .set_marker_type(MarkerType::Square)
        .set_label_position(PointLabelPosition::N)
        .set_custom_data_label("Oranges".to_owned())
        .set_colors(Color::from_vec_of_hex_strings(vec!["#aa0000"]))
        .load_data(&scatter_data_2).unwrap();

    // Generate and save the chart.
    Chart::new()
        .set_width(width)
        .set_height(height)
        .set_margins(top, right, bottom, left)
        .add_title(String::from("Scatter Chart"))
        .add_view(&scatter_view_1)
        .add_view(&scatter_view_2)
        .add_axis_bottom(&x)
        .add_axis_left(&y)
        .add_left_axis_label("Custom X Axis Label")
        .add_bottom_axis_label("Custom Y Axis Label")
        .add_legend_at(AxisPosition::Bottom)
        .save("scatter-chart-two-datasets.svg").unwrap();
}

Scatter Plot With Two Datasets

下一步

这仍然是一个正在进行中的项目,所以下一步将是实现更多的视图和改进现有功能。

依赖项

~2.3–3.5MB
~56K SLoC