3个版本 (1个稳定版本)
2.0.1 | 2024年6月5日 |
---|---|
0.1.1 | 2023年10月25日 |
0.1.0 | 2023年10月22日 |
#277 in 机器学习
每月下载量142次
在raybnn_neural中使用
21KB
356 行
RayBNN_Optimizer
使用CUDA、OpenCL和oneAPI通过GPU、CPU和FPGA实现的梯度下降优化器和遗传算法
- ADAM
- SGD
- 遗传算法
- 随机搜索
安装Arrayfire
在https://arrayfire.com/binaries/安装Arrayfire 3.9.0的二进制文件
或从源码构建 https://github.com/arrayfire/arrayfire/wiki/Getting-ArrayFire
添加到Cargo.toml
arrayfire = { version = "3.8.1", package = "arrayfire_fork" }
rayon = "1.10.0"
num = "0.4.3"
num-traits = "0.2.19"
half = { version = "2.4.1" , features = ["num-traits"] }
RayBNN_Optimizer = "2.0.1"
示例列表
优化损失函数的值
//Define Starting Point for optimization
let x0_cpu = vec![0.1, 0.4, 0.5, -1.2, 0.7];
let x0_dims = arrayfire::Dim4::new(&[1, x0_cpu.len() as u64, 1, 1]);
let x0 = arrayfire::Array::new(&x0_cpu, x0_dims);
//Define the loss function
let y_cpu = vec![-1.1, 0.4, 2.0, 2.1, 4.0];
let y = arrayfire::Array::new(&y_cpu, x0_dims);
//Define the loss function
let loss = |yhat: &arrayfire::Array<f64>| -> arrayfire::Array<f64> {
RayBNN_Optimizer::Continuous::Loss::MSE(yhat, &y)
};
//Define the gradient of the loss function
let loss_grad = |yhat: &arrayfire::Array<f64>| -> arrayfire::Array<f64> {
RayBNN_Optimizer::Continuous::Loss::MSE_grad(yhat, &y)
};
let mut point = x0.clone();
let mut direction = -loss_grad(&point);
let mut mt = arrayfire::constant::<f64>(0.0,direction.dims());
let mut vt = arrayfire::constant::<f64>(0.0,direction.dims());
let single_dims = arrayfire::Dim4::new(&[1,1,1,1]);
let mut alpha = arrayfire::constant::<f64>(1.0,single_dims);
let alpha_max = arrayfire::constant::<f64>(1.0,single_dims);
let rho = arrayfire::constant::<f64>(0.1,single_dims);
//Create alpha values to sweep through
let v = 30;
let alpha_vec = RayBNN_Optimizer::Continuous::LR::create_alpha_vec::<f64>(v, 1.0, 0.5);
let beta0 = arrayfire::constant::<f64>(0.9,single_dims);
let beta1 = arrayfire::constant::<f64>(0.999,single_dims);
//Optimization Loop
for i in 0..120
{
alpha = alpha_max.clone();
//Automatically Determine Optimal Step Size using BTLS
RayBNN_Optimizer::Continuous::LR::BTLS(
loss
,loss_grad
,&point
,&direction
,&alpha_vec
,&rho
,&mut alpha
);
//Update current point
point = point.clone() + alpha*direction.clone();
direction = -loss_grad(&point);
//Use ADAM optimizer
RayBNN_Optimizer::Continuous::GD::adam(
&beta0
,&beta1
,&mut direction
,&mut mt
,&mut vt
);
}
损失函数的类型
let mut cross_entropy = RayBNN_Optimizer::Continuous::Loss::softmax_cross_entropy(&Yhat,&Y);
let mut cross_entropy_grad = RayBNN_Optimizer::Continuous::Loss::softmax_cross_entropy_grad(&Yhat,&Y);
let mut cross_entropy = RayBNN_Optimizer::Continuous::Loss::sigmoid_cross_entropy(&Yhat,&Y);
let mut cross_entropy_grad = RayBNN_Optimizer::Continuous::Loss::sigmoid_cross_entropy_grad(&Yhat,&Y);
let mut MAE = RayBNN_Optimizer::Continuous::Loss::MAE(&Yhat,&Y);
let mut MSE = RayBNN_Optimizer::Continuous::Loss::MSE(&Yhat,&Y);
let MSE_grad = RayBNN_Optimizer::Continuous::Loss::MSE_grad(&Yhat,&Y);
let mut RMSE = RayBNN_Optimizer::Continuous::Loss::RMSE(&Yhat,&Y);
依赖项
~3.5MB
~73K SLoC