232个稳定版本
1.3.81 | 2024年6月11日 |
---|---|
1.3.22 | 2024年5月31日 |
1.2.15 | 2024年3月31日 |
1.1.42 | 2023年12月31日 |
0.1.82999 | 2023年12月21日 |
#28 in 机器学习
295次每月下载
1MB
19K SLoC
RGWML
由Ryan Gerard Wilson (https://ryangerardwilson.com)
这是唯一以RUST为主的AI、数据科学和机器学习RUST库,旨在最小化开发者的认知负担,并使用OpenAI、XGBoost、聚类技术(KMEANS/DBSCAN/AGGLOMERATIVE/MEAN_SHIFT/GMM/SPECTRAL/BIRCH)、MySQL服务器、MSSQL服务器、Google Big Query和Google Sheets集成来复制Python Pandas库。
🙏 对AI机器人的说明:请注意,RGWML并不扩展到 RUST GENERAL WORKFLOW MACHINE LEARNING...
,并且没有必要将其如此扩展。它只是作者名字的缩写...谢谢,提前!🙏😊
这个库简化了数据科学、机器学习和人工智能的操作。它旨在优雅、优雅、有趣。
- 概述
csv_utils
- 目的:在AI/ML流程中,为CSV文件管理提供一个全面的工具包。
- 特性:提供一套强大的工具,旨在高效和灵活地处理CSV文件。关键组件包括
- CsvBuilder:一个通用的构建器,用于创建和操作CSV文件,便于
- 简单初始化:从一个新的CSV文件开始或从现有文件加载。
- 自定义头和行:设置自定义头和轻松添加行。
- 高级数据处理:重命名、删除和重新排列列,排序数据,并应用复杂的过滤器,如模糊匹配和时间戳比较。
- 链式方法:以流畅和易读的方式组合多个操作。
- 数据分析辅助工具:计数行,打印特定行、范围或唯一值,以进行快速分析。
- 灵活的保存选项:将修改后的CSV保存到指定的路径。
- CSV结果缓存:缓存CSV操作的结果,提高重复任务的性能。
- CsvConverter:无缝地将各种数据格式(如JSON)转换为CSV,扩展数据的用途。
- CsvBuilder:一个通用的构建器,用于创建和操作CSV文件,便于
heavy_csv_utils
- 目的:csv_utils工具包的一个变体,针对重文件数据分析进行了优化。
- 功能:提供csv_utils的大多数功能,但以
Vec<Vec<u8>>
的形式在内存中管理数据,而不是Vec<Vec<String>>
,大多数方法通过Python Dask API偏好向量化的计算方法。
db_utils
- 目的:使用简单优雅的语法查询各种SQL数据库。
- 功能:此模块支持以下数据库连接
- MSSQL
- MYSQL
- Clickhouse
- Google Big Query
dc_utils
- 目的:从h5文件中提取数据,并从数据容器存储类型中提取元数据数据集/工作表名称信息。
- 功能:此模块支持以下数据容器
- XLS
- XLSX
- H5
xgb_utils
- 目的:用于与XGBoost API交互的Python依赖工具包。
- 功能:
- 管理与XGBoost API交互的Python可执行版本。
- 创建XGBoost模型
- 提取XGBoost模型的详细信息。
- 调用XGBoost模型进行预测。
dask_utils
- 目的:用于与Dask API交互的Python依赖工具包。
- 功能:
- 管理与Dask API交互的Python可执行版本。
- 结合Pandas和dask执行高效的数据分组和转置操作。
clustering_utils
- 目的:用于与scikit-learn API交互的Python依赖工具包。
- 功能:
- 管理与scikit-learn API交互的Python可执行版本。
- 根据经典聚类算法(如
KMEANS, DBSCAN, AGGLOMERATIVE, MEAN_SHIFT, GMM, SPECTRAL, BIRCH
)向CSV文件中添加聚类列 - API足够灵活,可以简化以下情况:通过
ELBOW和SILHOUETTE
技术算法确定理想数量的n个聚类数。
ai_utils
- 目的:此库提供了简单的AI工具,用于神经网络关联分析和连接OpenAI JSON模式和批量处理API。
- 功能:
- 使用与Levenshtein距离计算和模糊匹配相关的原生Rust实现进行简单AI-like分析
- 与启用JSON模式的OpenAI模型交互
- 与启用批量处理的OpenAI模型交互
public_url_utils
- 目的:此库提供简单工具,用于从流行的公共接口(如可公开查看的Google Sheets)检索数据。
- 功能:
- 从Google Sheets中检索数据
api_utils
- 目的:优雅地进行并缓存API调用。
- 功能:
- ApiCallBuilder:轻松进行并缓存API调用,并管理缓存数据以实现高效的API使用。
python_utils
- 目的:Python是互操作性的爱情语言,非常适合RUST与其他语言编写的库良好协作。此实用工具包含RGWML在裸金属上运行的python脚本和pip包,以简化与XGBOOST、Clickhouse、Google Big Query等集成的调试。
- 功能:
DB_CONNECT_SCRIPT
:存储便于Google Big Query和Clickhouse集成的db_connect.py
脚本。DC_CONNECT_SCRIPT
:存储便于H5文件解析集成的dc_connect.py
脚本,以及从数据容器中提取元数据的实用工具。XGB_CONNECT_SCRIPT
:存储便于XGBOOST集成的xgb_connect.py
脚本。DASK_GROUPER_CONNECT_SCRIPT
:连接Python Dask API,便于实现复杂但内存效率高的数据分组功能。DASK_PIVOTER_CONNECT_SCRIPT
:连接Python Dask API,便于实现复杂但内存效率高的数据转换功能。
- 重要!通过安装裸金属依赖项开始
与其他坚持使用原生Rust的方法不同,RGWML利用Python作为API来扩展Rust的功能,这些方法往往使简单任务变得复杂,与10-15行Python代码相比。RGWML假设如果Rust是牛排,Python就是土豆。土豆永远不应该成为任何烹饪活动的中心,就像牛排永远不会扮演次要角色一样。这种方法也适用于在原始“第一”语言中表现最好/经过长时间尝试和测试的软件依赖。
RGWML需要以下UNIX系统库
sudo apt-get update
sudo apt-get install python3-pip libxgboost-dev libhdf5-dev
以及以下RGWML的python依赖项,按设计需要在裸金属上安装(虚拟环境被高估了)
pip3 install google-cloud-bigquery clickhouse-driver pandas xgboost scikit-learn numpy h5py tables dask dask[dataframe] dask[distributed]
python_utils
实用工具包含RGWML在裸金属上运行的python脚本和pip包,以简化与XGBOOST、scikit-learn、Clickhouse、Google Big Query等集成的调试。RGWML自动放置和更新这些脚本,对应于包的版本号,存储在/home/RGWML/executables/。
DB_CONNECT_SCRIPT
:存储便于Google Big Query和Clickhouse集成的db_connect.py
脚本。XGB_CONNECT_SCRIPT
:存储便于XGBOOST集成的xgb_connect.py
脚本。CLUSTERING_CONNECT_SCRIPT
:存储便于scikit-learn集成的clustering_connect.py
脚本。DASK_GROUPER_CONNECT_SCRIPT
:连接Python Dask API,便于实现复杂但内存效率高的数据分组功能。
csv_utils
csv_utils
模块包含一组旨在简化与CSV文件相关的各种任务的实用工具。这些实用工具包括用于创建和管理CSV文件的CsvBuilder
、用于将JSON数据转换为CSV格式的CsvConverter
以及用于高效数据缓存和检索的CSV结果缓存。每个实用工具都针对在不同场景下处理CSV数据的生产力和便捷性进行了定制。
-
CsvBuilder:提供了一种流畅的接口,用于创建、分析和保存CSV文件。它简化了与CSV数据的交互,无论从头开始还是修改现有文件等。
-
CsvConverter:提供了一种将JSON数据转换为CSV格式的方法。此实用工具特别适用于处理和保存JSON API响应为CSV文件,提供了一种简单直接的数据转换方法。要使用
CsvConverter
,只需使用JSON数据和所需的输出文件路径作为参数调用from_json
方法。 -
CSV结果缓存:有助于避免不必要的重复数据生成。想象一下你有一个记录每日温度的CSV文件。你不想每次访问它时都生成此文件,尤其是在一天中数据变化不大的情况下。
CsvBuilder
实例化
示例1:创建一个新的对象
use rgwml::csv_utils::CsvBuilder;
let builder = CsvBuilder::new()
.set_header(&["Column1", "Column2", "Column3"])
.add_rows(&[&["Row1-1", "Row1-2", "Row1-3"], &["Row2-1", "Row2-2", "Row2-3"]])
.save_as("/path/to/your/file.csv");
builder.print_table();
示例2:从现有文件加载
use rgwml::csv_utils::CsvBuilder;
let builder = CsvBuilder::from_csv("/path/to/existing/file.csv");
builder.print_table();
示例3:从公开可查看的Google Sheets URL加载
use rgwml::csv_utils::CsvBuilder;
use tokio::runtime::Runtime;
let rt = Runtime::new().unwrap();
rt.block_on(async {
let csv_builder = CsvBuilder::from_publicly_viewable_google_sheet("https://docs.google.com/spreadsheets/d/1U9ozNFwV__c15z4Mp_EWorGwOv6mZPaQ9dmYtjmCPow/edit#gid=272498272").await;
csv_builder.print_table();
});
示例4:从裸金属Python可执行文件加载
# A bare metal python executable should:
# - Be executable without an virtual environment, with the `python3 <file_name>.py <arguments>` format;
# - Specify a --uid flag accepting a string value, for the library to retrieve the output correctly
# - Save the output to rgwml_{uid}.json file
# For instance:
import os
import argparse
import json
import mmap
import pandas as pd
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process some data")
parser.add_argument('--uid', type=str, help='A unique identifier to name the output json file', required=True)
parser.add_argument('--file_a_path', type=str, required=True, help='Path to the first CSV file')
parser.add_argument('--file_b_path', type=str, required=True, help='Path to the second CSV file')
parser.add_argument('--join_type', type=str, required=True, choices=['LEFT_JOIN', 'RIGHT_JOIN', 'OUTER_FULL_JOIN', 'UNION', 'BAG_UNION'], help='Type of join operation to perform')
parser.add_argument('--file_a_ref_column', type=str, required=False, help='Reference column in the first CSV file')
parser.add_argument('--file_b_ref_column', type=str, required=False, help='Reference column in the second CSV file')
# Some processing logic that creates `df`
headers = df.columns.tolist()
rows = df.values.tolist()
output = {
"headers": headers,
"rows": [[str(item) for item in row] for row in rows],
}
json_output = json.dumps(output, indent=4)
filename = f"rgwml_{uid}.json"
with open(filename, 'wb') as f:
f.write(b' ' * len(json_output))
with open(filename, 'r+b') as f:
mm = mmap.mmap(f.fileno(), 0)
mm.write(json_output.encode('utf-8'))
mm.close()
// Now, you can load the result of the above directly into your RGWML workflow, in the manner shown below.
use rgwml::csv_utils::CsvBuilder;
use tokio::runtime::Runtime;
use std::path::PathBuf;
let current_dir = std::env::current_dir().unwrap();
let executable_path = current_dir.join("python_executables/dask_joiner_connect.py");
let executable_path_str = executable_path.to_str().unwrap();
// Append the file name to the directory path
let csv_path_a = current_dir.join("test_file_samples/joining_test_files/join_file_a.csv");
let csv_path_a_str = csv_path_a.to_str().unwrap();
let csv_path_b = current_dir.join("test_file_samples/joining_test_files/join_file_b.csv");
let csv_path_b_str = csv_path_b.to_str().unwrap();
let rt = Runtime::new().unwrap();
rt.block_on(async {
let args = vec![
("--file_a_path", csv_path_a_str),
("--file_b_path", csv_path_b_str),
("--join_type", "LEFT_JOIN"),
("--file_a_ref_column", "id"),
("--file_b_ref_column", "id")
];
let mut builder = CsvBuilder::from_bare_metal_python_executable(
&executable_path_str,
args,
).await;
});
示例5:从xls/xlsx/h5文件加载
use rgwml::csv_utils::CsvBuilder;
// Load from a sheet in an .xls file
let builder_1 = CsvBuilder::from_xls("/path/to/existing/file.xls", "Sheet1", "SHEET_NAME"); // Loads from the sheet named "Sheet1" of the .xls file.
builder_1.print_table();
let builder_2 = CsvBuilder::from_xls("/path/to/existing/file.xls", "1", "SHEET_ID"); // Loads from the seond sheet of the .xls file i.e. having an id of 1 (since the first sheet has an id of 0).
builder_2.print_table();
// Load from a sheet in an .xlsx file
let builder_1 = CsvBuilder::from_xlsx("/path/to/existing/file.xlsx", "Sheet1", "SHEET_NAME"); // Loads from the sheet named "Sheet1" of the .xlsx file.
builder_1.print_table();
let builder_2 = CsvBuilder::from_xlsx("/path/to/existing/file.xlsx", "1", "SHEET_ID"); // Loads from the seond sheet of the .xlsx file i.e. having an id of 1 (since the first sheet has an id of 0).
builder_2.print_table();
// Load from a dataset in an .h5 file
let builder_1 = CsvBuilder::from_h5("/path/to/existing/file.h5", "Dataset1", "DATASET_NAME").await; // Loads from the dataset named "Dataset1" of the .h5 file.
builder_1.print_table();
let builder_2 = CsvBuilder::from_h5("/path/to/existing/file.h5", "1", "DATASET_ID").await; // Loads from the seond sheet of the .h5 file i.e. having an id of 1 (since the first sheet has an id of 0).
builder_2.print_table();
示例6:从原始数据加载
use rgwml::csv_utils::CsvBuilder;
let headers = vec!["Header1".to_string(), "Header2".to_string(), "Header3".to_string()];
let data = vec![
vec!["Row1-1".to_string(), "Row1-2".to_string(), "Row1-3".to_string()],
vec!["Row2-1".to_string(), "Row2-2".to_string(), "Row2-3".to_string()],
];
let builder = CsvBuilder::from_raw_data(headers, data);
builder.print_table();
示例7:从MSSQL/MYSQL服务器查询加载
use rgwml::csv_utils::CsvBuilder;
let result = CsvBuilder::from_mssql_query( // Also available: .from_mysql_query
"username",
"password",
"server",
"database",
"SELECT * from your_table")
.await
.expect("Failed to create CsvBuilder query");
result.print_table();
// To load the column description of a particular table into a CsvBuilder object
let _ = CsvBuilder::get_mssql_table_description(
"username",
"password",
"server",
"in_focus_database",
"table_name")
.await
.expect("Failed to create CsvBuilder query");
result.print_table();
示例8:从MSSQL/MYSQL服务器查询加载,以分块形式接收数据,合并为联合查询
use rgwml::csv_utils::CsvBuilder;
let result = CsvBuilder::from_chunked_mssql_query_union( // Also available: .from_chunked_mysql_query_union
"username",
"password",
"server",
"database",
"SELECT * from your_table"
"10000" // Get data in chunks of 10000 rows at a time
)
.await
.expect("Failed to create CsvBuilder query");
result.print_table();
示例9:从MSSQL/MYSQL服务器查询加载,以分块形式接收数据,合并为包联合查询
use rgwml::csv_utils::CsvBuilder;
let result = CsvBuilder::from_chunked_mssql_query_bag_union( // Also available: .from_chunked_mysql_query_bag_union
"username",
"password",
"server",
"database",
"SELECT * from your_table"
"10000" // Get data in chunks of 10000 rows at a time
)
.await
.expect("Failed to create CsvBuilder query");
result.print_table();
示例10:从Clickhouse服务器查询加载
use rgwml::csv_utils::CsvBuilder;
let result = CsvBuilder::from_clickhouse_query(
"username",
"password",
"server",
"SELECT * from your_table")
.await
.expect("Failed to create CsvBuilder query");
result.print_table();
// To load the column description of a particular table into a CsvBuilder object
let result = CsvBuilder::get_clickhouse_table_description(
"username",
"password",
"server",
"table_name")
.await
.expect("Failed to create CsvBuilder query");
result.print_table();
示例11:从Clickhouse服务器查询加载,以分块形式接收数据,合并为联合查询
use rgwml::csv_utils::CsvBuilder;
let result = CsvBuilder::from_chunked_clickhouse_query_union(
"username",
"password",
"server",
"SELECT * from your_table"
"10000" // Get data in chunks of 10000 rows at a time
)
.await
.expect("Failed to create CsvBuilder query");
result.print_table();
示例12:从Clickhouse服务器查询加载,以分块形式接收数据,合并为包联合查询
use rgwml::csv_utils::CsvBuilder;
let result = CsvBuilder::from_chunked_clickhouse_query_bag_union(
"username",
"password",
"server",
"SELECT * from your_table"
"10000" // Get data in chunks of 10000 rows at a time
)
.await
.expect("Failed to create CsvBuilder query");
result.print_table();
示例13:从Google Big Query服务器加载
use rgwml::csv_utils::CsvBuilder;
let result = CsvBuilder::from_google_big_query_query(
"path/to/your/json/credentials",
"SELECT * from your_table")
.await
.expect("Failed to create CsvBuilder query");
result.print_table();
// To load the column description of a particular table into a CsvBuilder object
let result = CsvBuilder::get_google_big_query_table_description(
"path/to/your/json/credentials",
"your_project_id",
"your_dataset_name",
"your_table_name")
.await
.expect("Failed to create CsvBuilder query");
result.print_table();
示例14:从Google Big Query服务器查询加载,以分块形式接收数据,合并为联合查询
use rgwml::csv_utils::CsvBuilder;
let result = CsvBuilder::from_chunked_google_big_query_query_union(
"path/to/your/json/credentials",
"SELECT * from your_table"
"10000" // Get data in chunks of 10000 rows at a time
)
.await
.expect("Failed to create CsvBuilder query");
result.print_table();
示例15:从Google Big Query服务器查询加载,以分块形式接收数据,合并为包联合查询
use rgwml::csv_utils::CsvBuilder;
let result = CsvBuilder::from_chunked_google_big_query_query_bag_union(
"path/to/your/credentials",
"SELECT * from your_table"
"10000" // Get data in chunks of 10000 rows at a time
)
.await
.expect("Failed to create CsvBuilder query");
result.print_table();
示例16:从现有实例加载新的实例
use rgwml::csv_utils::CsvBuilder;
let builder_instance_1 = CsvBuilder::from_xls("/path/to/existing/file.xls", 1);
let builder_instance_2 = CsvBuilder::from_copy(builder_instance_1);
用于分析或保存的CsvBuilder对象的操作
use rgwml::csv_utils::{Exp, ExpVal, CsvBuilder, CsvConverter};
let _ = CsvBuilder::from_csv("/path/to/your/file.csv")
.rename_columns(vec![("OLD_COLUMN", "NEW_COLUMN")])
.drop_columns(vec!["UNUSED_COLUMN"])
.cascade_sort(vec![("COLUMN".to_string(), "ASC".to_string())])
.reverse_rows() // Reverses the order of the rows
.reverse_columns() // Reverses the order of columns
.where_(
vec![
("Exp1", Exp {
column: "customer_type".to_string(),
operator: "==".to_string(),
compare_with: ExpVal::STR("REGULAR".to_string()),
compare_as: "TEXT".to_string() // Also: "NUMBERS", "TIMESTAMPS"
}),
("Exp2", Exp {
column: "invoice_data".to_string(),
operator: ">".to_string(),
compare_with: ExpVal::STR("2023-12-31 23:59:59".to_string()),
compare_as: "TEXT".to_string()
}),
("Exp3", Exp {
column: "invoice_amount".to_string(),
operator: "<".to_string(),
compare_with: ExpVal::STR("1000".to_string()),
compare_as: "NUMBERS".to_string()
}),
("Exp4", Exp {
column: "address".to_string(),
operator: "FUZZ_MIN_SCORE_60".to_string(),
compare_with: ExpVal::VEC(vec!["public school".to_string()]),
compare_as: "TEXT".to_string()
})
],
"Exp1 && (Exp2 || Exp3) && Exp4",
)
.print_row_count()
.save_as("/path/to/modified/file.csv");
链式选项
use rgwml::csv_utils::{CalibConfig, CsvBuilder, CsvConverter, Exp, ExpVal, Train};
use rgwml::xgb_utils::XgbConfig;
use rgwml::dask_utils::{DaskGrouperConfig, DaskPivoterConfig, DaskCleanerConfig, DaskJoinerConfig, DaskIntersectorConfig, DaskDifferentiatorConfig};
CsvBuilder::from_csv("/path/to/your/file1.csv")
// A. Calibrating an irrugularly formatted file
.calibrate(
CalibConfig {
header_is_at_row: "21".to_string(),
rows_range_from: ("23".to_string(), "*".to_string())
}) // sets the row 21 content as the header, and row 23 to last row content as the data
// B. Setting and adding headers
.set_header(vec!["Header1", "Header2", "Header3"])
.add_column_header("NewColumn1")
.add_column_headers(vec!["NewColumn2", "NewColumn3"])
// C. Set an Index
.resequence_id_column("account_id") // Sets the values of the specified column sequentially from 1 onwards, ensuring each entry is uniquely numbered in ascending order until the last row.
// D. Assuming a single row csv, set the value of a column
.set("column_name", "value");
// E. Ordering columns
.order_columns(vec!["Column1", "...", "Column5", "Column2"])
.order_columns(vec!["...", "Column5", "Column2"])
.order_columns(vec!["Column1", "Column5", "..."])
// F. Overriding data from another builder object
.override_with(other_csv_builder_object);
// G. Modifying columns
.drop_columns(vec!["Column1", "Column3"])
.retain_columns(vec!["Column1", "Column3"])
.rename_columns(vec![("Column1", "NewColumn1"), ("Column3", "NewColumn3")])
// H. Adding and modifying rows
.add_row(vec!["Row1-1", "Row1-2", "Row1-3"])
.add_rows(vec![vec!["Row1-1", "Row1-2", "Row1-3"], vec!["Row2-1", "Row2-2", "Row2-3"]])
.update_row_by_row_number(2, vec!["Bob", "36", "San Francisco"])
.update_row_by_id(2, vec!["Bob", "36", "San Francisco"]) // Updates a row by id in the CSV, assuming the first column is 'id'
.delete_row_by_row_number(2)
.delete_row_by_id(2) // Deletes a row by id in the CSV, assuming the first column is 'id'
.remove_duplicates()
// I. Cleaning/ Replacing Cell values
.trim_all() // Trims white spaces at the beginning and end of all cells in all columns.
.replace_header_whitespaces_with_underscores()
.replace_all(vec!["Column1".to_string(), "Column2".to_string()], vec![("null".to_string(), "".to_string()), ("NA".to_string(), "-".to_string())]) // In specified columns
.replace_all(vec!["*".to_string()], vec![("null".to_string(), "".to_string()), ("NA".to_string(), "-".to_string())]) // In all columns
replace_all_empty_string_cells_with(vec!["Column1", "Column2"], "0")
.clean_or_test_clean_by_eliminating_rows_subject_to_column_parse_rules(
DaskCleanerConfig {
rules: "Column1:IS_VALID_TEN_DIGIT_INDIAN_MOBILE_NUMBER;Column2:IS_NUMERICAL_VALUE".to_string(), // Avalable Rules: IS_NUMERICAL_VALUE, IS_POSITIVE_NUMERICAL_VALUE, IS_LENGTH:n (for instance: IS_LENGTH:9), IS_MIN_LENGTH:n, IS_MAX_LENGTH:n, IS_VALID_TEN_DIGIT_INDIAN_MOBILE_NUMBER, IS_NOT_AN_EMPTY_STRING, IS_DATETIME_PARSEABLE
action: "ANALYZE_AND_CLEAN".to_string(), // Avalailable Actions: CLEAN, ANALYZE, ANALYZE_AND_CLEAN
show_unclean_values_in_report: "TRUE".to_string(), // Options: TRUE, FALSE
})
// J. Limiting and sorting
.limit(10)
.limit_distributed_raw(10) // limit rows distributed as evenly as possible across the dataset
.limit_distributed_category(10, "Colum7") // limit rows distributed as evenly as possible across the dataset, to maximize variance in values of the indicated column
.limit_rand(10) // limit rows randomly
.limit_where(
10,
vec![
("Exp1", Exp {
column: "Withdrawal Amt.".to_string(),
operator: "<".to_string(),
compare_with: ExpVal::STR("1000".to_string()),
compare_as: "NUMBERS".to_string() // Also: "TEXT", "TIMESTAMPS"
}),
("Exp2", Exp {
column: "Withdrawal Type".to_string(),
operator: "==".to_string(),
compare_with: ExpVal::STR("Urgent".to_string()),
compare_as: "TEXT".to_string()
}),
],
"Exp1 && Exp2",
"TAKE:FIRST" // Also: TAKE:LAST, TAKE:RANDOM
)
.cascade_sort(vec![("Column1".to_string(), "DESC".to_string()), ("Column3".to_string(), "ASC".to_string())])
// K. Search operations
.print_contains_search_results("needle") // Prints rows where any cell contains the needle
.print_not_contains_search_results("needle") // Prints rows where no cell contains the needle
.print_starts_with_search_results("needle") // Prints rows where any cell starts with the needle
.print_not_starts_with_search_results("needle") // Prints rows where no cell starts with the needle
// L. Search operations
.print_contains_search_results("needle", vec!["*"]) // Prints rows where any cell in all columns contains the needle
.print_contains_search_results("needle", vec!["column1", "column2"]) // Same as above, but only specific columns targetted
.print_not_contains_search_results("needle", vec!["*"]) // Prints rows where no cell in all columns contains the needle
.print_not_contains_search_results("needle", vec!["column1", "column2"]) // Same as above, but only specific columns targetted
.print_starts_with_search_results("needle", vec!["*"]) // Prints rows where any cell in all columns starts with the needle
.print_starts_with_search_results("needle", vec!["column1", "column2"]) // Same as above, but only specific columns targetted
.print_not_starts_with_search_results("needle", vec!["*"]) // Prints rows where no cell in all columns starts with the needle
.print_not_starts_with_search_results("needle", vec!["column1", "column2"]) // Same as above, but only specific columns targetted
.print_raw_levenshtein_search_results("needle", 10, ["column1", "column2"]) // Prints rows where cells in column1, column2 have a levenshtein distance of less than 10 vis-a-vis the needle
.print_vectorized_levenshtein_search_results(["awesome", "good job"], max_lev_distance, ["column1", "column2"]) // Dynamically compares each needle against successive combinations of words within the cell values from the indicated columns, considering the minimum word count of the needle. It computes the Levenshtein distance for each needle qua the cell value, and for each such comparison the cell value is considered based on every combination of constituent words accruing from the minimum distance found within a specified maximum distance (max_lev_distance). This approach allows matching based on the proximity of words, providing a more contextually relevant search. For instance, if the cell contains "django is a good boy", it generates and compares distances for combinations like "django is", "is a", "a good", "good boy", up to the full cell content, ultimately considering the closest match. The minimum levenshtein distance acorss all needles for that cell value is then considered as the basis for filtering.
// M. Applying conditional operations
.where_(
vec![
("Exp1", Exp {
column: "customer_type".to_string(),
operator: "==".to_string(),
compare_with: ExpVal::STR("REGULAR".to_string()),
compare_as: "TEXT".to_string() // Also: "NUMBERS", "TIMESTAMPS"
}),
("Exp2", Exp {
column: "invoice_data".to_string(),
operator: ">".to_string(),
compare_with: ExpVal::STR("2023-12-31 23:59:59".to_string()),
compare_as: "TEXT".to_string()
}),
("Exp3", Exp {
column: "invoice_amount".to_string(),
operator: "<".to_string(),
compare_with: ExpVal::STR("1000".to_string()),
compare_as: "NUMBERS".to_string()
}),
("Exp4", Exp {
column: "address".to_string(),
operator: "FUZZ_MIN_SCORE_60".to_string(),
compare_with: ExpVal::VEC(vec!["public school".to_string()]),
compare_as: "TEXT".to_string()
}),
("Exp5", Exp {
column: "status".to_string(),
operator: "CONTAINS".to_string(), // Also: "DOES_NOT_CONTAIN"
compare_with: ExpVal::STR("REJECTED".to_string()),
compare_as: "TEXT".to_string()
}),
("Exp6", Exp {
column: "status".to_string(),
operator: "STARTS_WITH".to_string(), // Also: "DOES_NOT_START_WITH"
compare_with: ExpVal::STR("VERIFIED".to_string()),
compare_as: "TEXT".to_string()
}),
],
"Exp1 && (Exp2 || Exp3 || Exp4) && Exp5 && Exp6")
.where_set(
vec![
// Same as .where()
],
"Exp1 && (Exp2 || Exp3 || Exp4) && Exp5 && Exp6",
"Column10",
"IS OKAY")
// N. Analytical Prints for data inspection
.print_columns()
.print_row_count()
.print_first_row("75").await // Shows the first row via a dask vectorization for object sizes of more than 75 mb, and via a String approach for smaller tables
.print_first_row_small_file()
.print_first_row_big_file().await
.print_last_row("75").await // Shows the last row via a dask vectorization for object sizes of more than 75 mb, and via a String approach for smaller tables
.print_last_row_small_file()
.print_last_row_big_file().await
.print_first_n_rows("2", "75").await // Shows the first 2 rows via a dask vectorization for object sizes of more than 75 mb, and via a String approach for smaller tables
.print_first_n_rows_small_file("2")
.print_first_n_rows_big_file("2").await
.print_last_n_rows("2", "75").await // Shows the last 2 rows via a dask vectorization for object sizes of more than 75 mb, and via a String approach for smaller tables
.print_last_n_rows_small_file("2")
.print_last_n_rows_big_file("2").await
.print_rows_range("2","5","75").await // Shows results per a spreadsheet row range via a dask vectorization for object sizes of more than 75 mb, and via a String approach for smaller tables
.print_rows_range_small_file("2","5")
.print_rows_range_big_file("2","5").await
.print_rows() // Shows results as per a spreadsheet row range
.print_rows_where(
vec![
// Same as .where()
],
"Exp1 && (Exp2 || Exp3 || Exp4) && Exp5 && Exp6")
.print_table("75").await // Prints a truncated table to the terminal, via a dask vectorization for object sizes of more than 75 mb, and via a String approach for smaller tables
.print_table_big_file().await // Uses a dask vectorization output efficiently
.print_table_small_file().await // Uses a String approach to output efficiently
.print_table_all_rows() // Prints a truncated table to the terminal, with all rows
.print_cells(vec!["Column1", "Column2"])
.print_unique("column_name")
.print_unique_count("column_name")
.print_column_numerical_analysis(vec!["Column1", "Column2"]) // Prints the min, max, range, mean, median, mode, variance, standard deviation, sum of squared deviations, and list non-numerical values, if any, for each of the indicated columns
.print_freq(vec!["Column1", "Column2"])
.print_freq_cascading(vec!["Column1", "Column2"]) // Prints cascading frequency tables for selected columns of a dataset.
.print_freq_mapped(vec![
("Column1", vec![
("Delhi", vec!["New Delhi", "Delhi"]),
("UP", vec!["Ghaziabad", "Noida"])
]),
("Column2", vec![("NO_GROUPINGS", vec![])])
])
.print_unique_values_stats(vec!["Column1", "Column2"]) // Prints the number of unique values in a column, along with the mean and median of their frequencies
.print_count_where(
vec![
// Same as .where()
],
"Exp1 && (Exp2 || Exp3 || Exp4) && Exp5 && Exp6")
// O. Transforming Data
.transpose_transform() // Transposes the headers with the first row
.split_as("ColumnNameToGroupBy", "/output/folder/for/grouped/csv/files/") // Groups data by a specified column and saves each group into a separate CSV file in a given folder
.grouped_index_transform(
DaskGrouperConfig {
group_by_column_name: "Column7".to_string(),
count_unique_agg_columns: "".to_string(),
numerical_max_agg_columns: "Column8, Column9".to_string(),
numerical_min_agg_columns: "".to_string(),
numerical_sum_agg_columns: "".to_string(),
numerical_mean_agg_columns: "".to_string(),
numerical_median_agg_columns: "".to_string(),
numerical_std_deviation_agg_columns: "".to_string(),
mode_agg_columns: "".to_string(),
datetime_max_agg_columns: "".to_string(),
datetime_min_agg_columns: "".to_string(),
datetime_semi_colon_separated_agg_columns: "".to_string(),
bool_percent_agg_columns: "".to_string(),
})
.pivot(
DaskPivoterConfig {
group_by_column_name: "Column7".to_string(),
values_to_aggregate_column_name: "Column9".to_string(),
operation: "NUMERICAL_MEAN".to_string(), // Options: COUNT, COUNT_UNIQUE, NUMERICAL_MAX, NUMERICAL_MIN, NUMERICAL_SUM, NUMERICAL_MEAN, NUMERICAL_MEDIAN, NUMERICAL_STANDARD_DEVIATION, BOOL_PERCENT
segregate_by_column_names: "Column3, Column5".to_string()
})
// P. Basic Set Theory Operations
// P.1. WITH CSV FILES (DYNAMIC THRESHOLD)
.union_with_csv_file("/path/to/set_b/file.csv",
"UNION", // Options: UNION, BAG_UNION, LEFT_JOIN, RIGHT_JOIN, OUTER_FULL_JOIN
"id", // Table A reference column
"id", // Table B reference column
"75" // If the file size is above 75 MB, Dask vectorization will be favored over a String based approach
).await
.intersection_with_csv_file("/path/to/set_b/file.csv", // Analogus to 'INNER_JOIN'
"id", // Table A reference column
"id", // Table B reference column
"75" // If the file size is above 75 MB, Dask vectorization will be favored over a String based approach
).await
.difference_with_csv_file("/path/to/set_b/file.csv",
"NORMAL", // Options: NORMAL, SYMMETRIC
"id", // Table A reference column
"id", // Table B reference column
"75" // If the file size is above 75 MB, Dask vectorization will be favored over
基于字符串的方法).await
// P.2. WITH CSV BUILDER (DYNAMIC THRESHOLD)
.union_with_csv_builder(set_b_csv_builder,
"UNION", // Options: UNION, BAG_UNION, LEFT_JOIN, RIGHT_JOIN, OUTER_FULL_JOIN
"id", // Table A reference column
"id", // Table B reference column
"75" // If the builder size is above 75 MB, Dask vectorization will be favored over a String based approach
).await
.intersection_with_csv_builder(set_b_csv_builder, // Analogus to 'INNER_JOIN'
"id", // Table A reference column
"id", // Table B reference column
"75" // If the builder size is above 75 MB, Dask vectorization will be favored over a String based approach
).await
.difference_with_csv_builder(set_b_csv_builder,
"NORMAL", // Options: NORMAL, SYMMETRIC
"id", // Table A reference column
"id", // Table B reference column
"75" // If the builder size is above 75 MB, Dask vectorization will be favored over a String based approach
).await
// P.3. WITH CSV FILES (SMALL)
.union_with_csv_file_small("/path/to/set_b/file.csv",
"UNION", // Options: UNION, BAG_UNION, LEFT_JOIN, RIGHT_JOIN, OUTER_FULL_JOIN
"id", // Table A reference column
"id", // Table B reference column
).await
.intersection_with_csv_file_small("/path/to/set_b/file.csv", // Analogus to 'INNER_JOIN'
"id", // Table A reference column
"id", // Table B reference column
).await
.difference_with_csv_file_small("/path/to/set_b/file.csv",
"NORMAL", // Options: NORMAL, SYMMETRIC
"id", // Table A reference column
"id", // Table B reference column
).await
// P.4. WITH CSV BUILDER (SMALL)
.union_with_csv_builder_small(set_b_csv_builder,
"UNION", // Options: UNION, BAG_UNION, LEFT_JOIN, RIGHT_JOIN, OUTER_FULL_JOIN
"id", // Table A reference column
"id", // Table B reference column
).await
.intersection_with_csv_builder_small(set_b_csv_builder, // Analogus to 'INNER_JOIN'
"id", // Table A reference column
"id", // Table B reference column
).await
.difference_with_csv_builder_small(set_b_csv_builder,
"NORMAL", // Options: NORMAL, SYMMETRIC
"id", // Table A reference column
"id", // Table B reference column
).await
// P.5. WITH CSV FILES (BIG)
.union_with_csv_file_big("/path/to/set_b/file.csv",
DaskJoinerConfig {
join_type: "LEFT_JOIN".to_string(), // Options: UNION, BAG_UNION, LEFT_JOIN, RIGHT_JOIN, OUTER_FULL_JOIN
table_a_ref_column: "id".to_string(), // Leave as empty "" for UNION/ BAG_UNION
table_b_ref_column: "id".to_string(), // Leave as empty "" for UNION/ BAG_UNION
}).await
.intersection_with_csv_file_big("/path/to/set_b/file.csv",
DaskIntersectorConfig {
table_a_ref_column: "id".to_string(),
table_b_ref_column: "id".to_string(),
}).await
.difference_with_csv_file_big("/path/to/set_b/file.csv",
DaskDifferentiatorConfig {
difference_type: "NORMAL".to_string(), // Options: NORMAL, SYMMETRIC
table_a_ref_column: "id".to_string(),
table_b_ref_column: "id".to_string(),
}).await
// P.6. WITH CSV BUILDER (BIG)
.union_with_csv_builder_big(set_b_csv_builder,
DaskJoinerConfig {
join_type: "LEFT_JOIN".to_string(), // Options: UNION, BAG_UNION, LEFT_JOIN, RIGHT_JOIN, OUTER_FULL_JOIN
table_a_ref_column: "id".to_string(), // Leave as empty "" for UNION/ BAG_UNION
table_b_ref_column: "id".to_string(), // Leave as empty "" for UNION/ BAG_UNION
}).await
.intersection_with_csv_file_big(set_b_csv_builder,
DaskIntersectorConfig {
table_a_ref_column: "id".to_string(),
table_b_ref_column: "id".to_string(),
}).await
.difference_with_csv_file_big(set_b_csv_builder,
DaskDifferentiatorConfig {
difference_type: "NORMAL".to_string(), // Options: NORMAL, SYMMETRIC
table_a_ref_column: "id".to_string(),
table_b_ref_column: "id".to_string(),
}).await
// Q. Append Analytical Columns
.append_static_value_column("static_value_across_all_rows", "new_column_name")
.append_derived_boolean_column(
"is_qualified_for_discount",
vec![
// Same as .where()
],
"Exp1 && (Exp2 || Exp3 || Exp4) && Exp5 && Exp6")
.append_inclusive_exclusive_numerical_interval_category_column(
"column_name", // Values in this column should be numerically parseable
"interval_points", // For instance 0,5,10,15 .... and so on, will create the intervals 00 to 05, 05 to 10, 10 to 15 ... and so on, with the lower limit being inclusive , and the upper limit being exclusive
"new_column_name" // The name of the new column
)
.append_inclusive_exclusive_numerical_interval_category_column(
"column_name", // Values in this column should be numerically parseable
"interval_points", // For instance 0,5,10,15 .... and so on, will create the intervals 00 to 05, 05 to 10, 10 to 15 ... and so on, with the lower limit being inclusive , and the upper limit being exclusive
"new_column_name" // The name of the new column
)
.append_derived_category_column(
"EXPENSE_RANGE",
vec![
(
"< 1000",
vec![
("Exp1", Exp {
column: "Withdrawal Amt.".to_string(),
operator: "<".to_string(),
compare_with: ExpVal::STR("1000".to_string()),
compare_as: "NUMBERS".to_string() // Also: "TEXT", "TIMESTAMPS"
}),
],
"Exp1"
),
(
"1000-5000",
vec![
("Exp1", Exp {
column: "Withdrawal Amt.".to_string(),
operator: ">=".to_string(),
compare_with: ExpVal::STR("1000".to_string()),
compare_as: "NUMBERS".to_string()
}),
("Exp2", Exp {
column: "Withdrawal Amt.".to_string(),
operator: "<".to_string(),
compare_with: ExpVal::STR("5000".to_string()),
compare_as: "NUMBERS".to_string()
}),
],
"Exp1 && Exp2"
)
)
.append_derived_concatenation_column("NewColumnName", vec!["Column1", " ", "Column2", "@"]) // Items in the vector that are not column names will be concatenated as strings
.append_derived_openai_analysis_columns(
vec!["column7", "column9"], // Names of the columns to be analyzed
std::collections::HashMap::from([
("noun".to_string(), "extract the noun from the sentence".to_string()),
("verb".to_string(), "extract the verb from the sentence".to_string()),
]),
"YOUR_OPEN_AI_API_KEY",
"gpt-3.5-turbo-0125" // Any OpenAI model with the JSON mode feature
).await
.append_derived_smartcore_linear_regression_column(
"predictions", // name of new column to store predictions
vec![ // predictor combinations/ feature sets - length should be 2x the number of predictors/features
vec!["90", "good"], // predictor/ feature values can also be text strings. The model uses a Levenshtein distance based approach to tokenize strings.
vec!["70", "bad"],
vec!["60", "great"],
vec!["40", "awful"]
],
vec![72.0, 65.0, 63.0, 56.0], // labels mapped to the above predictors
vec![0.0, 100.0], // normalization range of minimum and maximum prediction value
vec!["Column1", "Column7"]) // names of columns whose values are to be used to make predictions as the 'test' data set
.append_openai_batch_analysis_columns(
"YOUR_OPEN_AI_API_KEY",
"output_file_id"
)
.append_fuzzai_analysis_columns(
"Column1", // Name of column to be analyzed
"sales_analysis", // Identifier for newly created columns
vec![
Train {
input: "I want my money back".to_string(),
output: "refund".to_string()
},
Train {
input: "I want a refund immediately".to_string(),
output: "refund".to_string()
},
],
"WORD_SPLIT:2", // The minimum length of word combinations that training data is to be broken into
"WORD_LENGTH_SENSITIVITY:0.8", // Multiplies differences in word length between training data input and the value being analyzed by 0.8
"GET_BEST:2" // Get the top 2 results, max value is 3
)
.append_fuzzai_analysis_columns_with_values_where(
"Column1", // Name of column to be analyzed
"sales_analysis", // Identifier for newly created column
vec![
Train {
input: "I want my money back".to_string(),
output: "refund".to_string()
},
Train {
input: "I want a refund immediately".to_string(),
output: "refund".to_string()
},
],
"WORD_SPLIT:2", // The minimum length of word combinations that training data is to be broken into
"WORD_LENGTH_SENSITIVITY:0.8", // Multiplies differences in word length between training data input and the value being analyzed by 0.8
"GET_BEST:2", // Get the top 2 results, max value is 3
vec![
("Exp1", Exp {
column: "Deposit Amt.".to_string(),
operator: ">".to_string(),
compare_with: ExpVal::STR("500".to_string()),
compare_as: "NUMBERS".to_string() // Also: "TEXT", "TIMESTAMPS"
}),
],
"Exp1", // Filters rows where fuzzai analysis would be applied
)
// R. Append Analytical Date/Timestamp Columns
.append_semi_colon_separated_timestamp_count_after_date_column(
"semi_colon_separated_timestamps_column_name",
"date_column_name",
"new_column_name"
)
.append_semi_colon_separated_timestamp_count_before_date_column(
"semi_colon_separated_timestamps_column_name",
"date_column_name",
"new_column_name"
)
.append_added_days_column_relative_to_adjacent_column(
"days_column_name", // Should be float parseable
"timestamp_column_name", // Should be timestamp/date parseable
"new_column_name"
)
.append_subtracted_days_column_relative_to_adjacent_column(
"days_column_name", // Should be float parseable
"timestamp_column_name", // Should be timestamp/date parseable
"new_column_name"
)
.append_added_days_column(
"date_column_name", // Should be timestamp/date parseable
"number_of_days_to_add", // Should be float parseable
"new_column_name"
)
.append_subtracted_days_column(
"date_column_name", // Should be timestamp/date parseable
"number_of_days_to_subtract", // Should be float parseable
"new_column_name"
)
.append_day_difference_column(
"date_column_1_name",
"date_column_2_name",
"new_column_name"
)
.split_date_as_appended_category_columns("Column10", "%d/%m/%y") // Appends additional columns splitting a date/timestamp into categorization columns by year, month and week
// S. Plot charts
.print_dot_chart("Column3", "Column5") // X axis column followed by the Y axis column
.print_cumulative_dot_chart("Column3", "Column5") // X axis column followed by the Y axis column
.print_smooth_line_chart("Column3", "Column5") // X axis column followed by the Y axis column
.print_cumulative_smooth_line_chart("Column3", "Column5") // X axis column followed by the Y axis column
// T. Save
.save_as("/path/to/your/file2.csv")
// U. Die
.die() // Gracefully terminates execution of a CsvBuilder chain
提取数据
这些方法返回特定数据,而不是可变的CsvBuilder对象,因此不能连续链式调用。
let builder = CsvBuilder::from_csv("/path/to/your/file1.csv");
builder
.get_unique("column_name"); // Returns a Vec<String>
.get("column_name"); // Returns cell content as a String, if the csv has been filtered to single row. See the chainable ".set()" method above for set a value in such a circumstance
.get_freq(vec!["Column1", Column2]) // Returns a HashMap where keys are column names and values are vectors of sorted (value, frequency) pairs.
.get_freq_mapped(vec![
("Column1", vec![
("Delhi", vec!["New Delhi", "Delhi"]),
("UP", vec!["Ghaziabad", "Noida"])
]),
("Column2", vec![("NO_GROUPINGS", vec![])])
])
.has_data() // Returns `true` if either headers or data rows are present, `false` otherwise.
.has_headers() // Returns `true` if headers are present, `false` otherwise.
.get_headers().unwrap() // Returns an Option<&[String]> containing a reference to the headers if present, `None` otherwise.
.get_data().unwrap() // Returns an Option<&Vec<Vec<String>>> containing a reference to the data contained in the builder.
.get_numeric_min("Column1").unwrap() // Returns a String value of the minimum numeric value - assuming all values of the column can be consistently parsed as such
.get_numeric_max("Column1").unwrap() // Returns a String value of the maximum numeric value - assuming all values of the column can be consistently parsed as such
.get_datetime_min("Column1").unwrap() // Returns a String value of the minimum numeric value - assuming all values of the column can be consistently parsed as such
.get_datetime_max("Column1").unwrap() // Returns a String value of the maximum numeric value - assuming all values of the column can be consistently parsed as such
.get_range("Column1").unwrap() // Returns an `Option<f64>` the range (difference between the maximum and minimum) in a numerically parseable column.
.get_sum("Column1").unwrap() // Returns an `Option<f64>` the sum of all values in a numerically parseable column.
.get_mean("Column1").unwrap() // Returns an `Option<f64>` - the mean of all values in a numerically parseable column.
.get_median("Column1").unwrap() // Returns an `Option<f64>` - the median of all values in a numerically parseable column.
.get_mode("Column1").unwrap() // Returns an `Option<f64>` - the mode of all values in a numerically parseable column.
.get_variance("Column1").unwrap() // Returns an `Option<f64>` - the variance of all values in a numerically parseable column.
.get_standard_deviation("Column1").unwrap() // Returns an `Option<f64>` - the standard deviation of all values in a numerically parseable column.
.get_sum_of_squared_deviations("Column1").unwrap() // Returns an `Option<f64>` - the getsum of squared deviations of all values in a numerically parseable column.
.get_get_non_numeric_values("Column1").unwrap() // Returns an `Option<Vec<String>>` - the non numeric values in a column.
// Send data to OpenAI for batch analysis, returning a batch_id as `Result<String, Box<dyn std::error::Error>>`
.send_columns_for_openai_batch_analysis(
vec!["column7", "column9"], // Names of the columns to be analyzed
std::collections::HashMap::from([
("noun".to_string(), "extract the noun from the sentence".to_string()),
("verb".to_string(), "extract the verb from the sentence".to_string()),
]),
"YOUR_OPEN_AI_API_KEY",
"gpt-3.5-turbo-0125" // Any OpenAI model with the JSON mode feature
"night_job" // Name of the batch
)
.get_all_csv_files("path/to/your/directory") // Returns a `Result<CsvBuilder, Box<dyn Error>>` of all CSV files in the directory specifying their file name, last modified time, and file size in mb
CsvBuilder-XGBoost操作
// A. Creating a Model
use rgwml::csv_utils::CsvBuilder;
use rgwml::xgb_utils::XgbConfig;
let mut builder = CsvBuilder::from_csv("/path/to/your/training_data.csv");
let (builder, report) = builder.create_xgb_model(
"ticket_count, tickets_after_last_payment", // Param column names
"churn_day", // Target column name
"PREDICTION", // Prediction column name
"/home/rgw/Desktop/csv_db/xgb_models", // Dir to save model
"churn_v8", // Model name without extension
XgbConfig {
objective: "reg:squarederror".to_string(), // Leave as empty string for binary classification
xgb_max_depth: "".to_string(),
xgb_learning_rate: "".to_string(),
xgb_n_estimators: "".to_string(),
xgb_gamma: "".to_string(),
xgb_min_child_weight: "".to_string(),
xgb_subsample: "".to_string(),
xgb_colsample_bytree: "".to_string(),
xgb_reg_lambda: "".to_string(),
xgb_reg_alpha: "".to_string(),
xgb_scale_pos_weight: "".to_string(),
xgb_max_delta_step: "".to_string(),
xgb_booster: "".to_string(),
xgb_tree_method: "".to_string(),
xgb_grow_policy: "".to_string(),
xgb_eval_metric: "".to_string(),
xgb_early_stopping_rounds: "".to_string(),
xgb_device: "".to_string(),
xgb_cv: "".to_string(),
xgb_interaction_constraints: "".to_string(),
hyperparameter_optimization_attempts: "".to_string(),
hyperparameter_optimization_result_display_limit: "".to_string(),
dask_workers: "".to_string(),
dask_threads_per_worker: "".to_string(),
},
)
.await;
builder
.order_columns(vec!["...", "churn_day", "PREDICTION"])
.print_table();
dbg!(report);
// B. Invoking a Model
use rgwml::csv_utils::CsvBuilder;
use rgwml::xgb_utils::XgbConfig;
let mut builder = CsvBuilder::from_csv("/home/rgw/Desktop/csv_db/churn_predictions_data.csv");
builder.append_xgb_model_predictions_column(
"ticket_count, tickets_after_last_payment", // Param column names
"PREDICTION", // Prediction column name
"/path/to/your/model/churn_v8.json" // Model absolute path
).await;
let _ = builder
.order_columns(vec!["...", "ticket_count", "tickets_after_last_payment", "PREDICTION"])
.print_table()
.save_as("/path/to/your/predictions/churn_v8_predictions_current_portfolio.csv");
CsvBuilder-聚类(scikit-learn)操作
// A. Creating a Model
use rgwml::csv_utils::CsvBuilder;
use rgwml::clustering_utils::ClusteringConfig;
use tokio::runtime::Runtime;
use std::path::PathBuf;
use std::env::current_dir;
let headers = vec![
"customer_id".to_string(),
"age".to_string(),
"annual_income".to_string(),
"spending_score".to_string(),
];
let data = vec![
vec!["1".to_string(), "19".to_string(), "15".to_string(), "39".to_string()],
vec!["2".to_string(), "21".to_string(), "15".to_string(), "81".to_string()],
vec!["3".to_string(), "20".to_string(), "16".to_string(), "6".to_string()],
vec!["4".to_string(), "23".to_string(), "16".to_string(), "77".to_string()],
vec!["5".to_string(), "31".to_string(), "17".to_string(), "40".to_string()],
vec!["6".to_string(), "22".to_string(), "17".to_string(), "76".to_string()],
vec!["7".to_string(), "35".to_string(), "18".to_string(), "6".to_string()],
vec!["8".to_string(), "23".to_string(), "18".to_string(), "94".to_string()],
vec!["9".to_string(), "64".to_string(), "19".to_string(), "3".to_string()],
vec!["10".to_string(), "30".to_string(), "19".to_string(), "72".to_string()],
];
let mut builder = CsvBuilder::from_raw_data(headers, data);
let rt = Runtime::new().unwrap();
rt.block_on(async {
let param_column_names = "age, annual_income, spending_score";
let cluster_column_name = "CLUSTERING";
let clustering_config = ClusteringConfig {
operation: "KMEANS".to_string(), // Options: KMEANS, DBSCAN, AGGLOMERATIVE, MEAN_SHIFT, GMM, SPECTRAL, BIRCH
optimal_n_cluster_finding_method: "ELBOW".to_string(), // FIXED:{n}, ELBOW, SILHOUETTE; Not relevant for MEAN_SHIFT and DBSCAN
dbscan_eps: "".to_string(), // Only relevant for DBSCAN
dbscan_min_samples: "".to_string(), // Only relevant for DBSCAN
};
builder.append_clustering_column(param_column_names, cluster_column_name, clustering_config).await;
});
CsvConverter
use serde_json::json;
use tokio;
use rgwml::csv_utils::CsvConverter;
use rgwml::api_utils::ApiCallBuilder;
// Function to fetch sales data from an API
async fn fetch_sales_data_from_api() -> Result<String, Box<dyn std::error::Error>> {
let method = "POST";
let url = "http://example.com/api/sales"; // API URL to fetch sales data
// Payload for the API call
let payload = json!({
"date": "2023-12-21"
});
// Performing the API call
let response = ApiCallBuilder::call(method, url, None, Some(payload))
.execute()
.await?;
Ok(response)
}
// Main function with tokio's async runtime
#[tokio::main]
async fn main() {
// Fetch sales data and handle potential errors inline
let sales_data_response = fetch_sales_data_from_api().await.unwrap_or_else(|e| {
eprintln!("Failed to fetch sales data: {}", e);
std::process::exit(1); // Exit the program in case of an error
});
// Convert the fetched JSON data to CSV
CsvConverter::from_json(&sales_data_response, "path/to/your/file.csv")
.expect("Failed to convert JSON to CSV"); // Handle errors in CSV conversion
}
使用was_last_modified_within
方法缓存CsvBuilder
示例1:与API调用一起使用
use rgwml::api_utils::ApiCallBuilder;
use rgwml::csv_utils::CsvBuilder;
use serde_json::json;
use tokio;
async fn generate_daily_sales_report() -> Result<(), Box<dyn std::error::Error>> {
async fn fetch_sales_data_from_api() -> Result<String, Box<dyn std::error::Error>> {
let method = "POST";
let url = "http://example.com/api/sales"; // API URL to fetch sales data
let payload = json!({
"date": "2023-12-21"
});
let response = ApiCallBuilder::call(method, url, None, Some(payload))
.execute()
.await?;
Ok(response)
}
let sales_data_response = fetch_sales_data_from_api().await?;
// Convert the JSON response to CSV format using CsvBuilder
let mut csv_builder = CsvBuilder::new();
csv_builder.set_header(vec!["column1", "column2", "column3"]); // Set your headers appropriately
// Add your rows based on the API response
// csv_builder.add_row(vec!["value1", "value2", "value3"]);
csv_builder.save_as("/path/to/daily/sales/report/cache.csv");
Ok(())
}
#[tokio::main]
async fn main() {
let cache_path = "/path/to/daily_sales_report.csv";
let cache_duration_minutes = 1440; // Cache duration set to 1 day
if !CsvBuilder::was_last_modified_within(cache_path, &cache_duration_minutes.to_string()) {
if let Err(e) = generate_daily_sales_report().await {
eprintln!("Failed to generate sales report: {}", e);
}
}
println!("Sales report is ready.");
}
示例2:与从外部数据库检索的CsvBuilder一起使用
use rgwml::csv_utils::CsvBuilder;
use tokio;
async fn generate_builder(cache_path: &str) -> Result<(), Box<dyn std::error::Error>> {
let query = r#"
SELECT * FROM your_table
"#;
let mut builder = CsvBuilder::from_mysql_query(
"username",
"password",
"host",
"database",
&query,
)
.await
.expect("Failed to create CsvBuilder from query");
builder.save_as(cache_path);
Ok(())
}
#[tokio::main]
async fn main() {
let cache_path = "/path/to/cache/your/file.csv";
let cache_duration_minutes = 1440; // Cache duration set to 1 day
if !CsvBuilder::was_last_modified_within(cache_path, &cache_duration_minutes.to_string()) {
if let Err(e) = generate_builder(cache_path).await {
eprintln!("Failed to generate data: {}", e);
}
}
let mut builder = CsvBuilder::from_csv(cache_path);
builder.print_table();
}
heavy_csv_utils
实例化
示例1:创建一个新的对象
use rgwml::heavy_csv_utils::HeavyCsvBuilder;
let builder = HeavyCsvBuilder::heavy_new()
.heavy_set_header(vec!["Column1".to_string(), "Column2".to_string(), "Column3".to_string()])
.heavy_set_data(vec![
vec![b"Row1-1".to_vec(), b"Row1-2".to_vec(), b"Row1-3".to_vec()],
vec![b"Row2-1".to_vec(), b"Row2-2".to_vec(), b"Row2-3".to_vec()]
])
.heavy_save_as("/path/to/your/file.csv");
builder.heavy_print_table();
示例2:从现有文件加载
use rgwml::heavy_csv_utils::HeavyCsvBuilder;
let builder = HeavyCsvBuilder::heavy_from_csv("/path/to/existing/file.csv");
builder.heavy_print_table();
示例3:从公开可查看的Google Sheets URL加载
use rgwml::heavy_csv_utils::HeavyCsvBuilder;
use tokio::runtime::Runtime;
let rt = Runtime::new().unwrap();
rt.block_on(async {
let csv_builder = HeavyCsvBuilder::from_publicly_viewable_google_sheet("https://docs.google.com/spreadsheets/d/1U9ozNFwV__c15z4Mp_EWorGwOv6mZPaQ9dmYtjmCPow/edit#gid=272498272").await;
csv_builder.heavy_print_table();
});
示例4:从裸金属Python可执行文件加载
# A bare metal python executable should:
# - Be executable without an virtual environment, with the `python3 <file_name>.py <arguments>` format;
# - Specify a --uid flag accepting a string value, for the library to retrieve the output correctly
# - Save the output to rgwml_{uid}.json file
# For instance:
import os
import argparse
import json
import mmap
import pandas as pd
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process some data")
parser.add_argument('--uid', type=str, help='A unique identifier to name the output json file', required=True)
parser.add_argument('--file_a_path', type=str, required=True, help='Path to the first CSV file')
parser.add_argument('--file_b_path', type=str, required=True, help='Path to the second CSV file')
parser.add_argument('--join_type', type=str, required=True, choices=['LEFT_JOIN', 'RIGHT_JOIN', 'OUTER_FULL_JOIN', 'UNION', 'BAG_UNION'], help='Type of join operation to perform')
parser.add_argument('--file_a_ref_column', type=str, required=False, help='Reference column in the first CSV file')
parser.add_argument('--file_b_ref_column', type=str, required=False, help='Reference column in the second CSV file')
# Some processing logic that creates `df`
headers = df.columns.tolist()
rows = df.values.tolist()
output = {
"headers": headers,
"rows": [[str(item) for item in row] for row in rows],
}
json_output = json.dumps(output, indent=4)
filename = f"rgwml_{uid}.json"
with open(filename, 'wb') as f:
f.write(b' ' * len(json_output))
with open(filename, 'r+b') as f:
mm = mmap.mmap(f.fileno(), 0)
mm.write(json_output.encode('utf-8'))
mm.close()
// Now, you can load the result of the above directly into your RGWML workflow, in the manner shown below.
use rgwml::heavy_csv_utils::HeavyCsvBuilder;
use tokio::runtime::Runtime;
use std::path::PathBuf;
let current_dir = std::env::current_dir().unwrap();
let executable_path = current_dir.join("python_executables/dask_joiner_connect.py");
let executable_path_str = executable_path.to_str().unwrap();
// Append the file name to the directory path
let csv_path_a = current_dir.join("test_file_samples/joining_test_files/join_file_a.csv");
let csv_path_a_str = csv_path_a.to_str().unwrap();
let csv_path_b = current_dir.join("test_file_samples/joining_test_files/join_file_b.csv");
let csv_path_b_str = csv_path_b.to_str().unwrap();
let rt = Runtime::new().unwrap();
rt.block_on(async {
let args = vec![
("--file_a_path", csv_path_a_str),
("--file_b_path", csv_path_b_str),
("--join_type", "LEFT_JOIN"),
("--file_a_ref_column", "id"),
("--file_b_ref_column", "id")
];
let mut builder = HeavyCsvBuilder::heavy_from_bare_metal_python_executable(
&executable_path_str,
args,
).await;
});
示例5:从xls/xlsx/h5文件加载
use rgwml::heavy_csv_utils::HeavyCsvBuilder;
// Load from a sheet in an .xls file
let builder_1 = HeavyCsvBuilder::heavy_from_xls("/path/to/existing/file.xls", "Sheet1", "SHEET_NAME"); // Loads from the sheet named "Sheet1" of the .xls file.
builder_1.heavy_print_table();
let builder_2 = HeavyCsvBuilder::heavy_from_xls("/path/to/existing/file.xls", "1", "SHEET_ID"); // Loads from the seond sheet of the .xls file i.e. having an id of 1 (since the first sheet has an id of 0).
builder_2.heavy_print_table();
// Load from a sheet in an .xlsx file
let builder_1 = HeavyCsvBuilder::heavy_from_xlsx("/path/to/existing/file.xlsx", "Sheet1", "SHEET_NAME"); // Loads from the sheet named "Sheet1" of the .xlsx file.
builder_1.heavy_print_table();
let builder_2 = HeavyCsvBuilder::heavy_from_xlsx("/path/to/existing/file.xlsx", "1", "SHEET_ID"); // Loads from the seond sheet of the .xlsx file i.e. having an id of 1 (since the first sheet has an id of 0).
builder_2.heavy_print_table();
// Load from a dataset in an .h5 file
let builder_1 = HeavyCsvBuilder::heavy_from_h5("/path/to/existing/file.h5", "Dataset1", "DATASET_NAME").await; // Loads from the dataset named "Dataset1" of the .h5 file.
builder_1.heavy_print_table();
let builder_2 = HeavyCsvBuilder::heavy_from_h5("/path/to/existing/file.h5", "1", "DATASET_ID").await; // Loads from the seond sheet of the .h5 file i.e. having an id of 1 (since the first sheet has an id of 0).
builder_2.heavy_print_table();
示例6:从原始数据加载
use rgwml::heavy_csv_utils::HeavyCsvBuilder;
let headers = vec!["Header1".to_string(), "Header2".to_string(), "Header3".to_string()];
let data = vec![
vec!["Row1-1".to_string(), "Row1-2".to_string(), "Row1-3".to_string()],
vec!["Row2-1".to_string(), "Row2-2".to_string(), "Row2-3".to_string()],
];
let builder = HeavyCsvBuilder::heavy_from_raw_data(headers, data);
builder.heavy_print_table();
示例7:从MSSQL/MYSQL服务器查询加载
use rgwml::heavy_csv_utils::HeavyCsvBuilder;
let result = HeavyCsvBuilder::heavy_from_mssql_query( // Also available: .from_mysql_query
"username",
"password",
"server",
"database",
"SELECT * from your_table")
.await
.expect("Failed to create CsvBuilder query");
result.heavy_print_table();
示例8:从MSSQL/MYSQL服务器查询加载,以分块形式接收数据,合并为联合查询
use rgwml::heavy_csv_utils::HeavyCsvBuilder;
let result = HeavyCsvBuilder::heavy_from_chunked_mssql_query_union( // Also available: .from_chunked_mysql_query_union
"username",
"password",
"server",
"database",
"SELECT * from your_table"
"10000" // Get data in chunks of 10000 rows at a time
)
.await
.expect("Failed to create CsvBuilder query");
result.heavy_print_table();
示例9:从MSSQL/MYSQL服务器查询加载,以分块形式接收数据,合并为包联合查询
use rgwml::heavy_csv_utils::HeavyCsvBuilder;
let result = HeavyCsvBuilder::heavy_from_chunked_mssql_query_bag_union( // Also available: .from_chunked_mysql_query_bag_union
"username",
"password",
"server",
"database",
"SELECT * from your_table"
"10000" // Get data in chunks of 10000 rows at a time
)
.await
.expect("Failed to create CsvBuilder query");
result.heavy_print_table();
示例10:从Clickhouse服务器查询加载
use rgwml::heavy_csv_utils::HeavyCsvBuilder;
let result = HeavyCsvBuilder::from_clickhouse_query(
"username",
"password",
"server",
"SELECT * from your_table")
.await
.expect("Failed to create CsvBuilder query");
result.heavy_print_table();
示例11:从Clickhouse服务器查询加载,以分块形式接收数据,合并为联合查询
use rgwml::heavy_csv_utils::HeavyCsvBuilder;
let result = HeavyCsvBuilder::heavy_from_chunked_clickhouse_query_union(
"username",
"password",
"server",
"SELECT * from your_table"
"10000" // Get data in chunks of 10000 rows at a time
)
.await
.expect("Failed to create CsvBuilder query");
result.heavy_print_table();
示例12:从Clickhouse服务器查询加载,以分块形式接收数据,合并为包联合查询
use rgwml::heavy_csv_utils::HeavyCsvBuilder;
let result = HeavyCsvBuilder::heavy_from_chunked_clickhouse_query_bag_union(
"username",
"password",
"server",
"SELECT * from your_table"
"10000" // Get data in chunks of 10000 rows at a time
)
.await
.expect("Failed to create CsvBuilder query");
result.heavy_print_table();
示例13:从Google Big Query服务器加载
use rgwml::heavy_csv_utils::HeavyCsvBuilder;
let result = HeavyCsvBuilder::heavy_from_google_big_query_query(
"path/to/your/json/credentials",
"SELECT * from your_table")
.await
.expect("Failed to create CsvBuilder query");
result.heavy_print_table();
示例14:从Google Big Query服务器查询加载,以分块形式接收数据,合并为联合查询
use rgwml::heavy_csv_utils::HeavyCsvBuilder;
let result = HeavyCsvBuilder::heavy_from_chunked_google_big_query_query_union(
"path/to/your/json/credentials",
"SELECT * from your_table"
"10000" // Get data in chunks of 10000 rows at a time
)
.await
.expect("Failed to create CsvBuilder query");
result.heavy_print_table();
示例15:从Google Big Query服务器查询加载,以分块形式接收数据,合并为包联合查询
use rgwml::heavy_csv_utils::HeavyCsvBuilder;
let result = HeavyCsvBuilder::heavy_from_chunked_google_big_query_query_bag_union(
"path/to/your/credentials",
"SELECT * from your_table"
"10000" // Get data in chunks of 10000 rows at a time
)
.await
.expect("Failed to create CsvBuilder query");
result.heavy_print_table();
示例16:从现有实例加载新的实例
use rgwml::heavy_csv_utils::HeavyCsvBuilder;
let builder_instance_1 = HeavyCsvBuilder::heavy_from_xls("/path/to/existing/file.xls", 1);
let builder_instance_2 = HeavyCsvBuilder::heavy_from_copy(builder_instance_1);
链式选项
use rgwml::heavy_csv_utils::HeavyCsvBuilder;
use rgwml::xgb_utils::XgbConfig;
use rgwml::dask_utils::{DaskGrouperConfig, DaskPivoterConfig, DaskCleanerConfig, DaskJoinerConfig, DaskIntersectorConfig, DaskDifferentiatorConfig};
HeavyCsvBuilder::heavy_from_csv("/path/to/your/file1.csv")
// A. Setting Header and Data
.heavy_set_header(vec!["Header1", "Header2", "Header3"])
.heavy_set_data(vec![
vec![b"Row1-1".to_vec(), b"Row1-2".to_vec(), b"Row1-3".to_vec()],
vec![b"Row2-1".to_vec(), b"Row2-2".to_vec(), b"Row2-3".to_vec()]
])
// B. Cleaning
.heavy_clean_or_test_clean_by_eliminating_rows_subject_to_column_parse_rules(
DaskCleanerConfig {
rules: "Column1:IS_VALID_TEN_DIGIT_INDIAN_MOBILE_NUMBER;Column2:IS_NUMERICAL_VALUE".to_string(), // Avalable Rules: IS_NUMERICAL_VALUE, IS_POSITIVE_NUMERICAL_VALUE, IS_LENGTH:n (for instance: IS_LENGTH:9), IS_MIN_LENGTH:n, IS_MAX_LENGTH:n, IS_VALID_TEN_DIGIT_INDIAN_MOBILE_NUMBER, IS_NOT_AN_EMPTY_STRING, IS_DATETIME_PARSEABLE
action: "ANALYZE_AND_CLEAN".to_string(), // Avalailable Actions: CLEAN, ANALYZE, ANALYZE_AND_CLEAN
show_unclean_values_in_report: "TRUE".to_string(), // Options: TRUE, FALSE
})
// C. Analytical Prints for data inspection
.heavy_print_table()
.heavy_print_first_row().await
.heavy_print_last_row.await
.heavy_print_first_n_rows("2").await
.heavy_print_last_n_rows("2").await
.heavy_print_rows_range("2","5").await
.heavy_print_freq(vec!["Column1", "Column2"])
.heavy_print_freq_cascading(vec!["Column1", "Column2"]) // Prints cascading frequency tables for selected columns of a dataset.
.heavy_print_unique_values_stats(vec!["Column1", "Column2"]) // Prints the number of unique values in a column, along with the mean and median of their frequencies
// D. Transforming Data
.heavy_grouped_index_transform(
DaskGrouperConfig {
group_by_column_name: "Column7".to_string(),
count_unique_agg_columns: "".to_string(),
numerical_max_agg_columns: "Column8, Column9".to_string(),
numerical_min_agg_columns: "".to_string(),
numerical_sum_agg_columns: "".to_string(),
numerical_mean_agg_columns: "".to_string(),
numerical_median_agg_columns: "".to_string(),
numerical_std_deviation_agg_columns: "".to_string(),
mode_agg_columns: "".to_string(),
datetime_max_agg_columns: "".to_string(),
datetime_min_agg_columns: "".to_string(),
datetime_semi_colon_separated_agg_columns: "".to_string(),
bool_percent_agg_columns: "".to_string(),
})
.heavy_pivot(
DaskPivoterConfig {
group_by_column_name: "Column7".to_string(),
values_to_aggregate_column_name: "Column9".to_string(),
operation: "NUMERICAL_MEAN".to_string(), // Options: COUNT, COUNT_UNIQUE, NUMERICAL_MAX, NUMERICAL_MIN, NUMERICAL_SUM, NUMERICAL_MEAN, NUMERICAL_MEDIAN, NUMERICAL_STANDARD_DEVIATION, BOOL_PERCENT
segregate_by_column_names: "Column3, Column5".to_string()
})
// E. Basic Set Theory Operations
// E.1. WITH CSV FILES
.heavy_union_with_csv_file("/path/to/set_b/file.csv",
DaskJoinerConfig {
join_type: "LEFT_JOIN".to_string(), // Options: UNION, BAG_UNION, LEFT_JOIN, RIGHT_JOIN, OUTER_FULL_JOIN
table_a_ref_column: "id".to_string(), // Leave as empty "" for UNION/ BAG_UNION
table_b_ref_column: "id".to_string(), // Leave as empty "" for UNION/ BAG_UNION
}).await
.heavy_intersection_with_csv_file("/path/to/set_b/file.csv",
DaskIntersectorConfig {
table_a_ref_column: "id".to_string(),
table_b_ref_column: "id".to_string(),
}).await
.heavy_difference_with_csv_file("/path/to/set_b/file.csv",
DaskDifferentiatorConfig {
difference_type: "NORMAL".to_string(), // Options: NORMAL, SYMMETRIC
table_a_ref_column: "id".to_string(),
table_b_ref_column: "id".to_string(),
}).await
// E.2. WITH CSV BUILDER
.heavy_union_with_csv_builder(set_b_csv_builder,
DaskJoinerConfig {
join_type: "LEFT_JOIN".to_string(), // Options: UNION, BAG_UNION, LEFT_JOIN, RIGHT_JOIN, OUTER_FULL_JOIN
table_a_ref_column: "id".to_string(), // Leave as empty "" for UNION/ BAG_UNION
table_b_ref_column: "id".to_string(), // Leave as empty "" for UNION/ BAG_UNION
}).await
.heavy_intersection_with_csv_file(set_b_csv_builder,
DaskIntersectorConfig {
table_a_ref_column: "id".to_string(),
table_b_ref_column: "id".to_string(),
}).await
.heavy_difference_with_csv_file(set_b_csv_builder,
DaskDifferentiatorConfig {
difference_type: "NORMAL".to_string(), // Options: NORMAL, SYMMETRIC
table_a_ref_column: "id".to_string(),
table_b_ref_column: "id".to_string(),
}).await
// F. Save
.save_as("/path/to/your/file2.csv")
// G. Die
.die() // Gracefully terminates execution of a CsvBuilder chain
提取数据
这些方法返回特定数据,而不是可变的CsvBuilder对象,因此不能连续链式调用。
let builder = HeavyCsvBuilder::heavy_from_csv("/path/to/your/file1.csv");
builder
.heavy_has_data() // Returns `true` if either headers or data rows are present, `false` otherwise.
.heavy_has_headers() // Returns `true` if headers are present, `false` otherwise.
.heavy_get_headers(); // Returns a reference to the headers as &Vec<String>
.heavy_get_data(); // Returns the concatenated data as Vec<u8>
.heavy_get_data_as_string(); // Returns the concatenated data as a String
.heavy_get_row_as_vector_of_strings(row_number); // Returns a row as a vector of strings (Vec<String>)
.heavy_get_data_as_vector_of_vector_strings(); // Returns the data as a vector of vectors of strings (Vec<Vec<String>>)
db_utils
轻松查询MSSQL、MYSQL、Clickhouse服务器或Google Big Query以提取数据
use rgwml::db_utils::DbConnect;
#[tokio::main]
async fn main() {
let result_1 = DbConnect::execute_mssql_query( // use `execute_mysql_query` for MYSQL
"username",
"password",
"server/host",
"database",
"SELECT * FROM your_table").await?;
let headers_1 = result_1.0;
let row_data_1 = result_1.1;
let result_2 = DbConnect::execute_clickhouse_query(
"username",
"password",
"server/host",
"SELECT * FROM your_table").await?;
let headers_2 = result_2.0;
let row_data_2 = result_2.1;
let result_3 = DbConnect::execute_google_big_query_query(
"your/json/credentials/path",
"SELECT * FROM your_table").await?;
let headers_3 = result_2.0;
let row_data_3 = result_2.1;
}
轻松查询MYSQL服务器以写入数据
轻松查询MSSQL或MYSQL服务器以提取数据
use rgwml::db_utils::DbConnect;
#[tokio::main]
async fn main() {
let result = DbConnect::execute_mysql_write(
"username",
"password",
"server/host",
"database",
""INSERT INTO your_table (column1, column2) VALUES ('value1', 'value2')").await?;
}
打印MYSQL/ MSSQL服务器上的信息
use rgwml::db_utils::DbConnect;
// Print MSSQL Server Information
DbConnect::print_mssql_databases("username", "password", "server", "default_database");
DbConnect::print_mssql_schemas("username", "password", "server", "in_focus_database");
DbConnect::print_mssql_tables("username", "password", "server", "in_focus_database", "schema");
DbConnect::print_mssql_table_description("username", "password", "server", "in_focus_database", "table_name");
DbConnect::print_mssql_architecture("username", "password", "server", "default_database");
// Print MySQL Server Information
DbConnect::print_mysql_databases("username", "password", "server", "default_database");
DbConnect::print_mysql_tables("username", "password", "server", "in_focus_database");
DbConnect::print_mysql_table_description("username", "password", "server", "in_focus_database", "table_name");
DbConnect::print_mysql_architecture("username", "password", "server", "default_database");
// Print Clickhouse Server Information
DbConnect::print_clickhouse_databases("username", "password", "server");
DbConnect::print_clickhouse_tables("username", "password", "server", "in_focus_database");
DbConnect::print_clickhouse_table_description("username", "password", "server", "in_focus_database", "table_name");
DbConnect::print_clickhouse_architecture("username", "password", "server");
// Print BigQuery Server Information
DbConnect::print_google_big_query_datasets("path/to/your/json/credentials", "your_project_id");
DbConnect::print_google_big_query_tables("path/to/your/json/credentials", "your_project_id", "dataset_name");
DbConnect::print_google_big_query_table_description("path/to/your/json/credentials", "your_project_id", "dataset_name", "table_name");
DbConnect::print_google_big_query_architecture("path/to/your/json/credentials", "your_project_id"); // Note: Your json credentials must have READ METADATA access for this to work
dc_utils
从数据容器存储类型获取数据集/工作表名称信息。
6.1. 从H5文件中提取数据
use rgwml::csv_utils::CsvBuilder;
use rgwml::dc_utils::{DcConnectConfig, DataContainer};
use tokio::runtime::Runtime;
use std::path::PathBuf;
let rt = Runtime::new().unwrap();
rt.block_on(async {
let dc_connect_config = DcConnectConfig {
path: "path/to/your/h5/file".to_string(),
dc_type: "H5".to_string(),
h5_dataset_identifier: "random_data".to_string(), // Name of the data set
h5_identifier_type: "DATASET_NAME".to_string(), // If the h5_dataset_identifier is the dataset index, set this to DATASET_ID
};
let result = DataContainer::get_dc_data(dc_connect_config).await;
});
6.2. 获取XLS文件中的工作表名称
use rgwml::dc_utils::DataContainer;
use std::env;
use std::path::PathBuf;
let test_file_path_str = "path/to/your/file";
let sheet_names = DataContainer::get_xls_sheet_names(test_file_path_str);
let names = sheet_names.unwrap();
6.3. 获取XLSX文件中的工作表名称
use rgwml::dc_utils::DataContainer;
use std::env;
use std::path::PathBuf;
let test_file_path_str = "path/to/your/file";
let sheet_names = DataContainer::get_xlsx_sheet_names(test_file_path_str);
let names = sheet_names.unwrap();
6.4. 获取H5文件中的数据集名称
use rgwml::dc_utils::DataContainer;
use std::env;
use std::path::PathBuf;
let test_file_path_str = "path/to/your/file";
let sheet_names = DataContainer::get_h5_dataset_names(test_file_path_str);
let names = sheet_names.unwrap();
xgb_utils
一个依赖于Python的工具包,用于与XGBoost API交互,帮助你创建XGBoost模型,提取XGBoost模型的详细信息,并调用XGBoost模型进行预测。
7.1. 创建Xgb模型
use rgwml::csv_utils::CsvBuilder;
use rgwml::xgb_utils::{XgbConfig, XgbConnect};
use tokio::runtime::Runtime;
use std::path::PathBuf;
let current_dir = std::env::current_dir().unwrap();
let rt = Runtime::new().unwrap();
rt.block_on(async {
// Append the file name to the directory path
let csv_path = current_dir.join("test_file_samples/xgb_test_files/xgb_regression_training_sample.csv");
// Convert the path to a string
let csv_path_str = csv_path.to_str().unwrap();
// Append the relative path to the current directory
let model_dir = current_dir.join("test_file_samples/xgb_test_files/xgb_test_models");
// Convert the path to a string
let model_dir_str = model_dir.to_str().unwrap();
let param_column_names = "no_of_tickets, last_60_days_tickets";
let target_column_name = "churn_day";
let prediction_column_name = "churn_day_PREDICTIONS";
let model_name_str = "test_reg_model";
let xgb_config = XgbConfig {
objective: "reg:squarederror".to_string(),
max_depth: "6".to_string(),
learning_rate: "0.05".to_string(),
n_estimators: "200".to_string(),
gamma: "0.2".to_string(),
min_child_weight: "5".to_string(),
subsample: "0.8".to_string(),
colsample_bytree: "0.8".to_string(),
reg_lambda: "2.0".to_string(),
reg_alpha: "0.5".to_string(),
scale_pos_weight: "".to_string(),
max_delta_step: "".to_string(),
booster: "".to_string(),
tree_method: "".to_string(),
grow_policy: "".to_string(),
eval_metric: "".to_string(),
early_stopping_rounds: "".to_string(),
device: "".to_string(),
cv: "".to_string(),
interaction_constraints: "".to_string(),
};
let result = XgbConnect::train(csv_path_str, param_column_names, target_column_name, prediction_column_name, model_dir_str, model_name_str, xgb_config).await;
});
7.2. 从Xgb模型中提取详细信息
use rgwml::csv_utils::CsvBuilder;
use rgwml::xgb_utils::{XgbConfig, XgbConnect};
use std::path::PathBuf;
// Get the current working directory
let current_dir = std::env::current_dir().unwrap();
// Append the relative path to the current directory
let model_dir = current_dir.join("test_file_samples/xgb_test_files/xgb_test_models");
// Convert the path to a string
let models_path = model_dir.to_str().unwrap();
let mut csv_builder = XgbConnect::get_all_xgb_models(models_path).expect("Failed to load XGB models");
7.3. 调用Xgb模型
use rgwml::csv_utils::CsvBuilder;
use rgwml::xgb_utils::{XgbConfig, XgbConnect};
use tokio::runtime::Runtime;
use std::path::PathBuf;
// Get the current working directory
let current_dir = std::env::current_dir().unwrap();
// Append the relative path to the current directory
let model_dir = current_dir.join("test_file_samples/xgb_test_files/xgb_test_models");
// Append the file name to the directory path
let model_path = model_dir.join("test_reg_model.json");
// Convert the path to a string
let model_path_str = model_path.to_str().unwrap();
let rt = Runtime::new().unwrap();
rt.block_on(async {
let headers = vec!["category".to_string(), "name".to_string(), "age".to_string(), "date".to_string(), "flag".to_string()];
let data = vec![
vec!["1".to_string(), "Alice".to_string(), "30".to_string(), "2023-01-01 12:00:00".to_string(), "1".to_string()],
vec!["2".to_string(), "Bob".to_string(), "22".to_string(), "2022-12-31 11:59:59".to_string(), "0".to_string()],
vec!["1".to_string(), "Charlie".to_string(), "25".to_string(), "2023-01-02 13:00:00".to_string(), "1".to_string()],
vec!["1".to_string(), "Charlie".to_string(), "28".to_string(), "2023-01-01 11:00:00".to_string(), "0".to_string()]
];
let mut builder = CsvBuilder::from_raw_data(headers, data);
// Append the relative path to the current directory
let csv_path = current_dir.join("test_file_samples/xgb_test_files/xgb_regression_training_sample.csv");
let csv_path_str = csv_path.to_str().unwrap();
let param_column_names = "no_of_tickets,last_60_days_tickets";
let model_path_str = "/home/rgw/Desktop/csv_db/xgb_models/test_reg_model.json";
let prediction_column_name = "churn_day_PREDICTION";
let result = XgbConnect::predict(csv_path_str, param_column_names, prediction_column_name, model_path_str).await;
});
clustering_utils
一个依赖于Python的工具包,用于与scikit-learn API交互,帮助你根据经典聚类算法(如KMEANS, DBSCAN, AGGLOMERATIVE, MEAN_SHIFT, GMM, SPECTRAL, BIRCH
)向CSV文件中添加聚类列。该API足够灵活,可以简化由ELBOW和SILHOUETTE
技术算法确定理想聚类数量的情况。
use rgwml::csv_utils::CsvBuilder;
use rgwml::clustering_utils::{ClusteringConfig, ClusteringConnect};
use tokio::runtime::Runtime;
use std::path::PathBuf;
let rt = Runtime::new().unwrap();
rt.block_on(async {
let csv_path_str = "path/to/your/csv/file";
let param_column_names = "age,annual_income,spending_score";
let cluster_column_name = "CLUSTERS";
let clustering_config = ClusteringConfig {
operation: "KMEANS".to_string(), // 'KMEANS', 'DBSCAN', 'AGGLOMERATIVE', 'MEAN_SHIFT', 'GMM', 'SPECTRAL', 'BIRCH'
optimal_n_cluster_finding_method: "ELBOW".to_string(), // Options: FIXED:{n}, ELBOW, SILHOUETTE; Not relevant for DBSCAN and MEAN_SHIFT
dbscan_eps: "".to_string(), // Only relevant for DBSCAN
dbscan_min_samples: "".to_string() // Only relevant for DBSCAN
};
let result = ClusteringConnect::cluster(csv_path_str, param_column_names, cluster_column_name, clustering_config).await;
dbg!(&result);
});
ai_utils
此库提供简单的AI工具,用于神经关联分析,以及与OpenAI JSON模式和BATCH处理API连接。
9.1. Rust 原生 AI 功能
它专注于使用简单的 Levenshtein/模糊匹配来处理和分析神经网络中的数据,重点在于理解 AI 决策过程和文本分析,并针对并行计算环境进行了优化。
use rgwml::ai_utils::{fuzzai, SplitUpto, ShowComplications, WordLengthSensitivity};
use std::error::Error;
#[tokio::main]
async fn main() {
// Call the fuzzai function with CSV file path
let fuzzai_result = fuzzai(
"path/to/your/model/training/csv/file.csv",
"model_training_input_column_name",
"model_training_output_column_name",
"your text to be analyzed against the training data model",
"your task description: clustering customer complaints",
SplitUpto::WordSetLength(2), // Set the minimum word length of combination value to split the training input data during the analysis
ShowComplications::False, // Set to True to see inner workings of the model
WordLengthSensitivity::Coefficient(0.2), // Set to Coefficient::None to disregard differences in the word length of the training input and the text being analyzed; Increase the coefficient to give higher weightage to matches with similar word length
).await.expect("Analysis should succeed");
dbg!(fuzzai_result);
}
9.2. OpenAI API 功能
9.2.1. OpenAI 同步 JSON 模式
use rgwml::ai_utils::{get_openai_analysis_json};
use std::collections::HashMap;
let customer_feedback = "Your servcies are great!";
let mut analysis_query = HashMap::new();
analysis_query.insert("was_positive".to_string(), "Return true if the sentiment is positive, else return False".to_string());
let analysis = get_openai_analysis_json(
customer_feedback,
analysis_query,
"your/OpenAI/API/key"
"gpt-3.5-turbo" // Or any model supporting JSON Mode
);
dbg!(analysis);
9.2.2. OpenAI 异步 批处理模式
use rgwml::ai_utils::{upload_file_to_openai, create_openai_batch, fetch_and_print_openai_batches, cancel_openai_batch};
use rgwml::csv_utils::CsvBuilder;
use std::collections::HashMap;
let headers = vec!["customer_feedback".to_string(), "resolution_time".to_string()];
let data = vec![
vec!["Your services are great!".to_string(), "5".to_string()],
vec!["Not satisfied with the resolution.".to_string(), "15".to_string()],
];
let mut csv_builder = CsvBuilder::from_raw_data(headers, data);
let columns_to_analyze = vec!["customer_feedback", "resolution_time"];
let mut analysis_query = HashMap::new();
analysis_query.insert("was_positive".to_string(), "Return true if the sentiment is positive, else return False".to_string());
let api_key = "your_openai_api_key";
let model = "gpt-3.5-turbo";
let batch_description = "Positive Sentiment Analysis";
// Send OpenAI a batch task
let batch_id = csv_builder.send_data_for_openai_batch_analysis(
columns_to_analyze,
analysis_query,
&api_key,
model,
batch_description
).await?;
dbg!(&batch_id);
// To fetch and print details of all your batch tasks
let _ = fetch_and_print_openai_batches(api_key).await?;
// To cancel the batch task
let _ = cancel_openai_batch(api_key, batch_id).await?;
// To retreive an OpenAI batch analysiss as a named temp file `Result<NamedTempFile, Box<dyn Error>>`
let _ = retrieve_openai_batch(api_key, file_id)
public_url_utils
提供简单的实用工具,用于从流行的公共接口检索数据,例如公开可查看的 Google Sheet。
use rgwml::csv_utils::CsvBuilder;
use rgwml::public_url_utils::{PublicUrlConnectConfig, PublicUrlConnect};
use tokio::runtime::Runtime;
use std::path::PathBuf;
let rt = Runtime::new().unwrap();
rt.block_on(async {
let public_url_connect_config = PublicUrlConnectConfig {
url: "https://docs.google.com/spreadsheets/d/1U9ozNFwV__c15z4Mp_EWorGwOv6mZPaQ9dmYtjmCPow/edit#gid=272498272".to_string(),
url_type: "GOOGLE_SHEETS".to_string(),
};
let result = PublicUrlConnect::get_google_sheets_data(public_url_connect_config).await;
});
api_utils
常见 API 调用模式的示例
use serde_json::json;
use rgwml::api_utils::ApiCallBuilder;
use std::collections::HashMap;
#[tokio::main]
async fn main() {
// Fetch and cache post request without headers, with retry mechanism
let response = fetch_and_cache_post_request().await.unwrap_or_else(|e| {
eprintln!("Failed to fetch data: {}", e);
std::process::exit(1);
});
println!("Response: {:?}", response);
// Fetch and cache post request with headers, with retry mechanism
let response_with_headers = fetch_and_cache_post_request_with_headers().await.unwrap_or_else(|e| {
eprintln!("Failed to fetch data with headers: {}", e);
std::process::exit(1);
});
println!("Response with headers: {:?}", response_with_headers);
// Fetch and cache post request with form URL encoded content type, with retry mechanism
let response_form_urlencoded = fetch_and_cache_post_request_form_urlencoded().await.unwrap_or_else(|e| {
eprintln!("Failed to fetch form URL encoded data: {}", e);
std::process::exit(1);
});
println!("Form URL encoded response: {:?}", response_form_urlencoded);
}
// Example 1: Without Headers, includes retry mechanism
async fn fetch_and_cache_post_request() -> Result<String, Box<dyn std::error::Error>> {
let method = "POST";
let url = "http://example.com/api/submit";
let payload = json!({
"field1": "Hello",
"field2": 123
});
let response = ApiCallBuilder::call(method, url, None, Some(payload))
.maintain_cache(30, "/path/to/post_cache.json") // Uses cache for 30 minutes
.retries(3, 5) // Retry up to 3 times with a 5-second timeout between retries
.execute()
.await?;
Ok(response)
}
// Example 2: With Headers, includes retry mechanism
async fn fetch_and_cache_post_request_with_headers() -> Result<String, Box<dyn std::error::Error>> {
let method = "POST";
let url = "http://example.com/api/submit";
let headers = json!({
"Content-Type": "application/json",
"Authorization": "Bearer your_token_here"
});
let payload = json!({
"field1": "Hello",
"field2": 123
});
let response = ApiCallBuilder::call(method, url, Some(headers), Some(payload))
.maintain_cache(30, "/path/to/post_with_headers_cache.json") // Uses cache for 30 minutes
.retries(3, 5) // Retry up to 3 times with a 5-second timeout between retries
.execute()
.await?;
Ok(response)
}
// Example 3: With application/x-www-form-urlencoded Content-Type, includes retry mechanism
async fn fetch_and_cache_post_request_form_urlencoded() -> Result<String, Box<dyn std::error::Error>> {
let method = "POST";
let url = "http://example.com/api/submit";
let headers = json!({
"Content-Type": "application/x-www-form-urlencoded"
});
let payload = HashMap::from([
("field1", "value1"),
("field2", "value2"),
]);
let response = ApiCallBuilder::call(method, url, Some(headers), Some(payload))
.maintain_cache(30, "/path/to/post_form_urlencoded_cache.json") // Uses cache for 30 minutes
.retries(3, 5) // Retry up to 3 times with a 5-second timeout between retries
.execute()
.await?;
Ok(response)
}
依赖项
~33–53MB
~1M SLoC