19个不稳定版本 (3个破坏性更新)
0.4.0 | 2020年5月18日 |
---|---|
0.3.5 | 2020年1月30日 |
0.2.3 | 2019年11月28日 |
0.1.7 | 2019年10月1日 |
0.1.4 | 2019年8月30日 |
#1499 在 密码学
891 每月下载量
在 12 个crate中 使用(直接使用10个)
210KB
4.5K SLoC
amcl_rust_wrapper
- 封装了AMCL的一些部分,以提供一个优雅的抽象来处理有限域元素和椭圆曲线上的群元素。
- 重载了+、-、*、+=、-=运算符,以与域以及群元素一起使用。重载的运算符对应于恒定时间方法。但对于标量乘法,存在可变时间算法,但只能通过调用方法来使用。
- 提供创建域元素或群(椭圆曲线点)元素的向量抽象,然后进行缩放、添加、减法、取内积或Hadamard积。
- 支持创建域元素的单一变量多项式并对其执行算术运算。
- 使用rayon并行化一些向量和多项式的操作。
- 使用serde支持序列化。
- 在丢弃时清除域和群元素。使用zeroize。
- 此外,实现了额外的算法,如使用wNAF的可变时间标量乘法、恒定时间和可变时间多标量乘法、批(同时)求逆和Barrett约简。
构建
必须通过启用所提到的曲线之一作为功能来构建包装器。
要为BLS-381曲线构建,使用
cargo build --no-default-features --features bls381
同样,要为secp256k1构建,使用
cargo build --no-default-features --features secp256k1
要为secp256k1运行测试,使用
cargo test --no-default-features --features secp256k1
要将它用作依赖项crate,使用曲线的名称作为功能。例如,对于BLS12-381曲线,使用
[dependencies.amcl_wrapper]
version = "0.4.0"
default-features = false
features = ["bls381"]
注意,一次只能使用一个曲线,因此代码只能与一个功能一起工作。
基准测试
有针对各种操作的测试,打印执行这些操作所需的时间。它们以timing
*[]开头:要运行它们,使用
cargo test --release --no-default-features --features <curve name> -- --nocapture timing
示例
-
创建一些随机的域元素或群元素,并进行一些基本的加法/减法/乘法操作
let a = FieldElement::random(); let b = FieldElement::random(); let neg_b = -b; assert_ne!(b, neg_b); let neg_neg_b = -neg_b; assert_eq!(b, neg_neg_b); assert_eq!(b+neg_b, FieldElement::zero()); let c = a + b; let d = a - b; let e = a * b; let mut sum = FieldElement::zero(); sum += c; sum += d;
// Compute inverse of element let n = a.invert(); // Faster but constant time computation of inverse of several elements. `inverses` will be a vector of inverses of elements and `pr` will be the product of all inverses. let (inverses, pr) = FieldElement::batch_invert(vec![a, b, c, d].as_slice());
// Compute a width 5 NAF. let a_wnaf = a.to_wnaf(5);
// G1 is the elliptic curve sub-group over the prime field let x = G1::random(); let y = G1::random(); let neg_y = -y; assert_ne!(y, neg_y); let neg_neg_y = -neg_y; assert_eq!(y, neg_neg_y); assert_eq!(y+neg_y, G1::identity()); let z = x + y; let z1 = x - y; let mut sum_1 = G1::identity(); sum_1 += z; sum_1 += z1;
// G2 is the elliptic curve sub-group over the prime extension field let x = G2::random(); let y = G2::random(); let neg_y = -y; assert_ne!(y, neg_y); let neg_neg_y = -neg_y; assert_eq!(y, neg_neg_y); assert_eq!(y+neg_y, G2::identity()); let z = x + y; let z1 = x - y; let mut sum_1 = G2::identity(); sum_1 += z; sum_1 += z1; // To check that G1 or G2 have correct order, i.e. the curve order let x = G1::random(); assert!(x.has_correct_order()); let y = G2::random(); assert!(y.has_correct_order());
以上操作(如加法/减法/取反/反转)的变异版本也存在,但必须作为方法调用,例如
b.negate()
-
标量乘法
let a = FieldElement::random(); let g = G1::generator(); // the group's generator // constant time scalar multiplication let m = g * a; // variable time scalar multiplication using wNAF let n = g.scalar_mul_variable_time(&a);
-
通过内部哈希将任意大小的消息映射到域元素或群元素。
let msg = "Some message"; let a = FieldElement::from_msg_hash(msg.as_bytes()); let b = G1::from_msg_hash(msg.as_bytes());
-
创建域元素的向量并进行一些操作
// creates a vector of size 10 with all elements as 0 let mut a = FieldElementVector::new(10); // Add 2 more elements to the above vector a.push(FieldElement::random()); a.push(FieldElement::random()); a[0]; // 0th element of above vector a[1]; // 1st element of above vector a.len(); // length of vector a.sum(); // sum of elements of vector
// Return a Vandermonde vector of a given field element, i.e. given element `k` and size `n`, return vector as `vec![1, k, k^2, k^3, ... k^n-1]` let k = FieldElement::random(); let van_vec = FieldElementVector::new_vandermonde_vector(&k, 5);
// creates a vector of size 10 with randomly generated field elements let rands: Vec<_> = (0..10).map(|_| FieldElement::random()).collect(); // an alternative way of creating vector of size 10 of random field elements let rands_1 = FieldElementVector::random(10);
// Compute new vector as sum of 2 vectors. Requires vectors to be of equal length. let sum_vec = rands.plus(&rands_1); // Compute new vector as difference of 2 vectors. Requires vectors to be of equal length. let diff_vec = rands.minus(&rands_1); // Return the scaled vector of the given vector by a field element `n`, i.e. multiply each element of the vector by that field element let n = FieldElement::random(); let scaled_vec = rands.scaled_by(&n); // Scale the vector itself let mut rands_2 = rands_1.clone(); rands_2.scale(&n);
// Compute inner product of 2 vectors. Requires vectors to be of equal length. let ip = rands.inner_product(&rands_1); // Compute Hadamard product of 2 vectors. Requires vectors to be of equal length. let hp = rands.hadamard_product(&rands_1);
-
创建群元素的向量并进行一些操作
// creates a vector of size 10 with all elements as 0 let mut a = G1Vector::new(10); // Add 2 more elements to the above vector a.push(G1::random()); a.push(G1::random()); // creating vector of size 10 of random group elements let rands: Vec<_> = (0..10).map(|_| G1::random()).collect(); let rands_1 = G1Vector::random(10); // Compute new vector as sum of 2 vectors. Requires vectors to be of equal length. let sum_vec = rands.plus(&rands_1); // Compute new vector as difference of 2 vectors. Requires vectors to be of equal length. let diff_vec = rands.minus(&rands_1);
// Compute inner product of a vector of group elements with a vector of field elements. // eg. given a vector of group elements and field elements, G and F respectively, compute G[0]*F[0] + G[1]*F[1] + G[2]*F[2] + .. G[n-1]*F[n-1] // requires vectors to be of same length let g = G1Vector::random(10); let f = FieldElementVector::random(10); // Uses constant time multi-scalar multiplication `multi_scalar_mul_const_time` underneath. let ip = g.inner_product_const_time(&f); // Uses variable time multi-scalar multiplication `multi_scalar_mul_var_time` underneath. let ip1 = g.inner_product_var_time(&f); // If lookup tables are already constructed, `multi_scalar_mul_const_time_with_precomputation_done` and `multi_scalar_mul_var_time_with_precomputation_done` can be used for constant and variable time multi-scalar multiplication
-
配对支持。支持针对目标群
GT
的 Ate 配对let g1 = G1::random(); let g2 = G2::random(); // compute reduced ate pairing for 2 elements, i.e. e(g1, g2) let gt = GT::ate_pairing(&g1, &g2); // multiply target group elements let h1 = G1::random(); let h2 = G2::random(); let ht = GT::ate_pairing(&h1, &h2); let m = GT::mul(>, &ht); // compute reduced ate pairing for 4 elements, i.e. e(g1, g2) * e (h1, h2) let p = GT::ate_2_pairing(&g1, &g2, &h1, &h2); // compute reduced ate multi-pairing. Takes a vector of tuples of group elements G1 and G2 as Vec<(&G1, &G2)> let e = GT::ate_multi_pairing(tuple_vec); // Raise target group element to field element (GT^f) let r = FieldElement::random(); let p = gt.pow(&r);
-
序列化
// Convert to and from bytes let x = G1::random(); let y = G2::random(); // Get byte representation of uncompressed point by passing false to `to_bytes` let un_compressed_bytes_for_G1: Vec<u8> = x.to_bytes(false); let un_compressed_bytes_for_G2: Vec<u8> = y.to_bytes(false); // Get byte representation of compressed point by passing true to `to_bytes` let compressed_bytes_for_G1: Vec<u8> = x.to_bytes(true); let compressed_bytes_for_G2: Vec<u8> = y.to_bytes(true); // Use `write_to_slice` or `write_to_slice_unchecked` to avoid creating a `Vec` by passing a mutable slice // Use `from_bytes` to get the group element back from compressed or uncompressed bytes let x_recovered = G1::from_bytes(&un_compressed_bytes_for_G1)?; let y_recovered = G2::from_bytes(&un_compressed_bytes_for_G2)?; // Or let x_recovered = G1::from_bytes(&compressed_bytes_for_G1)?; let y_recovered = G2::from_bytes(&compressed_bytes_for_G2)?; // Convert to and from hex. let hex_repr = a.to_hex(); let a_recon = FieldElement::from_hex(hex_repr).unwrap(); // Constant time conversion // Convert to and from hex. let hex_repr = x.to_hex(); let x_recon = G1::from_hex(hex_repr).unwrap(); // Constant time conversion // Convert to and from hex. let hex_repr = y.to_hex(); let y_recon = G2::from_hex(hex_repr).unwrap(); // Constant time conversion
-
使用 G1 或 G2 的
hash_to_curve
将哈希转换为曲线点。根据 IETF 的哈希到曲线点标准将任意字节哈希到曲线的子群 https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/?include_text=1// `dst` is the domain separation tag and `msg` is the message (bytes) to hash let g1 = G1::hash_to_curve(&dst, &msg); // Similarly for G2 let g2 = G2::hash_to_curve(&dst, &msg);
有关更多详细信息,请参阅
hash_to_curve
的文档 -
一元多项式
// Create a univariate zero polynomial of degree `d`, i.e. the polynomial will be 0 + 0*x + 0*x^2 + 0*x^3 + ... + 0*x^d let poly = UnivarPolynomial::new(d); assert!(poly.is_zero()); // Create a polynomial from field elements as coefficients, the following polynomial will be c_0 + c_1*x + c_2*x^2 + c_3*x^3 + ... + c_d*x^d let coeffs: Vec<FieldElement> = vec![c_0, c_1, ... coefficients for smaller to higher degrees ..., c_d]; let poly1 = UnivarPolynomial(FieldElementVector::from(coeffs)); // Create a polynomial of degree `d` with random coefficients let poly2 = UnivarPolynomial::random(d); // Create a polynomial from its roots let poly3 = UnivarPolynomial::new_with_roots(roots); // Create a polynomial by passing the coefficients to a macro let poly4 = univar_polynomial!( FieldElement::one(), FieldElement::zero(), FieldElement::from(87u64), -FieldElement::one(), FieldElement::from(300u64) ); // A polynomial can be evaluated at a field element `v` let res: FieldElement = poly1.eval(v); // Polynomials can be added, subtracted, multiplied or divided to give new polynomials let sum = UnivarPolynomial::sum(&poly1, &poly2); // Or use operator overloading let sum = &poly1 + &poly2; let diff = UnivarPolynomial::difference(&poly1, &poly2); // Or use operator overloading let diff = &poly1 - &poly2; let product = UnivarPolynomial::multiply(&poly1, &poly2); // Or use operator overloading let product = &poly1 * &poly2; // Dividing polynomials: poly1 / poly2 let (quotient, rem) = UnivarPolynomial::long_division(&poly1, &poly2);
依赖项
~12MB
~300K SLoC