7个版本
0.3.4 | 2024年3月29日 |
---|---|
0.3.3 | 2023年2月23日 |
0.3.2 | 2022年12月21日 |
0.3.1 | 2022年9月26日 |
0.1.0 | 2022年9月26日 |
#312 in 文本处理
每月406次下载
715KB
102 代码行
Zipcodes
Zipcodes是一个简单的用于查询美国邮编的库。
使用此包无需安装系统级的sqlite3
,这对于AWS Lambda等云环境来说非常理想。
use zipcodes;
fn main() {
zipcodes::is_real("77429")
}
// >>> import zipcodes
// >>> assert zipcodes.is_real('77429')
// >>> assert len(zipcodes.similar_to('7742')) // != 0
// >>> exact_zip = zipcodes.matching('77429')[0]
// >>> filtered_zips = zipcodes.filter_by// (city="Cypress", state="TX")
// >>> assert exact_zip in filtered_zips
// >>> pprint.pprint(exact_zip)
// {'acceptable_cities': [],
// 'active': True,
// 'area_codes': ['281', '832'],
// 'city': 'Cypress',
// 'country': 'US',
// 'county': 'Harris County',
// 'lat': '29.9857',
// 'long': '-95.6548',
// 'state': 'TX',
// 'timezone': 'America/Chicago',
// 'unacceptable_cities': [],
// 'world_region': 'NA',
// 'zip_code': '77429',
// 'zip_code_type': 'STANDARD'}[
⚠️ 邮编数据最后更新于: 2021年10月3日 ⚠️
安装
Zipcodes可在crates.io上获取
$ cargo add zipcodes
或将其添加到您的Cargo.toml
[dependencies]
zipcodes = "0.3"
Zipcodes没有明确的MSRV。
邮编数据
邮编数据的构建脚本输出一个包含所有邮编数据的JSON文件,并使用bzip2进行压缩。数据源存储在build/app/data
下。
构建邮编数据以进行分发
$ build/app/__init__.py # outputs `zipcodes/zips.json.bz2`
示例
TODO: 从Python迁移。
>>> from pprint import pprint
>>> import zipcodes
>>> # Simple zip-code matching.
>>> pprint(zipcodes.matching('77429'))
[{'acceptable_cities': [],
'active': True,
'area_codes': ['281', '832'],
'city': 'Cypress',
'country': 'US',
'county': 'Harris County',
'lat': '29.9857',
'long': '-95.6548',
'state': 'TX',
'timezone': 'America/Chicago',
'unacceptable_cities': [],
'world_region': 'NA',
'zip_code': '77429',
'zip_code_type': 'STANDARD'}]
>>> # Handles of Zip+4 zip-codes nicely. :)
>>> pprint(zipcodes.matching('77429-1145'))
[{'acceptable_cities': [],
'active': True,
'area_codes': ['281', '832'],
'city': 'Cypress',
'country': 'US',
'county': 'Harris County',
'lat': '29.9857',
'long': '-95.6548',
'state': 'TX',
'timezone': 'America/Chicago',
'unacceptable_cities': [],
'world_region': 'NA',
'zip_code': '77429',
'zip_code_type': 'STANDARD'}]
>>> # Will try to handle invalid zip-codes gracefully...
>>> print(zipcodes.matching('06463'))
[]
>>> # Until it cannot.
>>> zipcodes.matching('0646a')
Traceback (most recent call last):
...
ValueError: Invalid characters, zipcode may only contain digits and "-".
>>> zipcodes.matching('064690')
Traceback (most recent call last):
...
ValueError: Invalid format, zipcode must be of the format: "#####" or "#####-####"
>>> zipcodes.matching(None)
Traceback (most recent call last):
...
TypeError: Invalid type, zipcode must be a string.
>>> # Whether the zip-code exists within the database.
>>> print(zipcodes.is_real('06463'))
False
>>> # How handy!
>>> print(zipcodes.is_real('06469'))
True
>>> # Search for zipcodes that begin with a pattern.
>>> pprint(zipcodes.similar_to('1018'))
[{'acceptable_cities': [],
'active': False,
'area_codes': ['212'],
'city': 'New York',
'country': 'US',
'county': 'New York County',
'lat': '40.71',
'long': '-74',
'state': 'NY',
'timezone': 'America/New_York',
'unacceptable_cities': ['J C Penney'],
'world_region': 'NA',
'zip_code': '10184',
'zip_code_type': 'UNIQUE'},
{'acceptable_cities': [],
'active': True,
'area_codes': ['212'],
'city': 'New York',
'country': 'US',
'county': 'New York County',
'lat': '40.7143',
'long': '-74.0067',
'state': 'NY',
'timezone': 'America/New_York',
'unacceptable_cities': [],
'world_region': 'NA',
'zip_code': '10185',
'zip_code_type': 'PO BOX'}]
>>> # Use filter_by to filter a list of zip-codes by specific attribute->value pairs.
>>> pprint(zipcodes.filter_by(city="Old Saybrook"))
[{'acceptable_cities': [],
'active': True,
'area_codes': ['860'],
'city': 'Old Saybrook',
'country': 'US',
'county': 'Middlesex County',
'lat': '41.3015',
'long': '-72.3879',
'state': 'CT',
'timezone': 'America/New_York',
'unacceptable_cities': ['Fenwick'],
'world_region': 'NA',
'zip_code': '06475',
'zip_code_type': 'STANDARD'}]
>>> # Arbitrary nesting of similar_to and filter_by calls, allowing for great precision while filtering.
>>> pprint(zipcodes.similar_to('2', zips=zipcodes.filter_by(active=True, city='Windsor')))
[{'acceptable_cities': [],
'active': True,
'area_codes': ['757'],
'city': 'Windsor',
'country': 'US',
'county': 'Isle of Wight County',
'lat': '36.8628',
'long': '-76.7143',
'state': 'VA',
'timezone': 'America/New_York',
'unacceptable_cities': [],
'world_region': 'NA',
'zip_code': '23487',
'zip_code_type': 'STANDARD'},
{'acceptable_cities': ['Askewville'],
'active': True,
'area_codes': ['252'],
'city': 'Windsor',
'country': 'US',
'county': 'Bertie County',
'lat': '35.9942',
'long': '-76.9422',
'state': 'NC',
'timezone': 'America/New_York',
'unacceptable_cities': [],
'world_region': 'NA',
'zip_code': '27983',
'zip_code_type': 'STANDARD'},
{'acceptable_cities': [],
'active': True,
'area_codes': ['803'],
'city': 'Windsor',
'country': 'US',
'county': 'Aiken County',
'lat': '33.4730',
'long': '-81.5132',
'state': 'SC',
'timezone': 'America/New_York',
'unacceptable_cities': [],
'world_region': 'NA',
'zip_code': '29856',
'zip_code_type': 'STANDARD'}]
>>> # Have any other ideas? Make a pull request and start contributing today!
>>> # Made with love by Sean Pianka
依赖项
~1.4–2.6MB
~47K SLoC