25个不稳定版本 (10个破坏性更新)

0.14.1 2024年8月2日
0.14.0 2024年7月4日
0.14.0-rc.42024年6月27日
0.13.1 2024年3月18日
0.4.0 2020年12月19日

#130编码

Download history 11507/week @ 2024-05-04 11695/week @ 2024-05-11 10684/week @ 2024-05-18 12019/week @ 2024-05-25 13831/week @ 2024-06-01 11258/week @ 2024-06-08 12515/week @ 2024-06-15 12187/week @ 2024-06-22 14769/week @ 2024-06-29 18701/week @ 2024-07-06 20616/week @ 2024-07-13 22877/week @ 2024-07-20 23776/week @ 2024-07-27 20737/week @ 2024-08-03 28461/week @ 2024-08-10 19859/week @ 2024-08-17

96,310 每月下载次数
1,275 个crate中使用 (122 个直接使用)

MIT/Apache

660KB
13K SLoC

Bevy Reflect

License Crates.io Downloads Docs Discord

此crate使您能够动态交互Rust类型

  • 派生Reflect特质
  • 使用名称(对于命名结构体)或索引(对于元组结构体)与字段交互
  • 使用新值“修补”您的类型
  • 使用“路径字符串”查找嵌套字段
  • 遍历结构体字段
  • 通过Serde自动序列化和反序列化(无需显式serde实现)
  • “反射”特质

功能

派生Reflect特质

// this will automatically implement the Reflect trait and the Struct trait (because the type is a struct)
#[derive(Reflect)]
struct Foo {
    a: u32,
    b: Bar,
    c: Vec<i32>,
    d: Vec<Baz>,
}

// this will automatically implement the Reflect trait and the TupleStruct trait (because the type is a tuple struct)
#[derive(Reflect)]
struct Bar(String);

#[derive(Reflect)]
struct Baz {
    value: f32,
}

// We will use this value to illustrate `bevy_reflect` features
let mut foo = Foo {
    a: 1,
    b: Bar("hello".to_string()),
    c: vec![1, 2],
    d: vec![Baz { value: 3.14 }],
};

使用名称与字段交互

assert_eq!(*foo.get_field::<u32>("a").unwrap(), 1);

*foo.get_field_mut::<u32>("a").unwrap() = 2;

assert_eq!(foo.a, 2);

使用新值“修补”您的类型

let mut dynamic_struct = DynamicStruct::default();
dynamic_struct.insert("a", 42u32);
dynamic_struct.insert("c", vec![3, 4, 5]);

foo.apply(&dynamic_struct);

assert_eq!(foo.a, 42);
assert_eq!(foo.c, vec![3, 4, 5]);

使用“路径字符串”查找嵌套字段

let value = *foo.get_path::<f32>("d[0].value").unwrap();
assert_eq!(value, 3.14);

遍历结构体字段

for (i, value: &Reflect) in foo.iter_fields().enumerate() {
    let field_name = foo.name_at(i).unwrap();
    if let Some(value) = value.downcast_ref::<u32>() {
        println!("{} is a u32 with the value: {}", field_name, *value);
    }
}

通过Serde自动序列化和反序列化(无需显式serde实现)

let mut registry = TypeRegistry::default();
registry.register::<u32>();
registry.register::<i32>();
registry.register::<f32>();
registry.register::<String>();
registry.register::<Bar>();
registry.register::<Baz>();

let serializer = ReflectSerializer::new(&foo, &registry);
let serialized = ron::ser::to_string_pretty(&serializer, ron::ser::PrettyConfig::default()).unwrap();

let mut deserializer = ron::de::Deserializer::from_str(&serialized).unwrap();
let reflect_deserializer = ReflectDeserializer::new(&registry);
let value = reflect_deserializer.deserialize(&mut deserializer).unwrap();
let dynamic_struct = value.take::<DynamicStruct>().unwrap();

assert!(foo.reflect_partial_eq(&dynamic_struct).unwrap());

“反射”特质

在给定的 &dyn Reflect 引用上调用特质的特质的特质,而无需知道底层类型!

#[derive(Reflect)]
#[reflect(DoThing)]
struct MyType {
    value: String,
}

impl DoThing for MyType {
    fn do_thing(&self) -> String {
        format!("{} World!", self.value)
    }
}

#[reflect_trait]
pub trait DoThing {
    fn do_thing(&self) -> String;
}

// First, lets box our type as a Box<dyn Reflect>
let reflect_value: Box<dyn Reflect> = Box::new(MyType {
    value: "Hello".to_string(),
});

// This means we no longer have direct access to MyType or its methods. We can only call Reflect methods on reflect_value.
// What if we want to call `do_thing` on our type? We could downcast using reflect_value.downcast_ref::<MyType>(), but what if we
// don't know the type at compile time?

// Normally in rust we would be out of luck at this point. Lets use our new reflection powers to do something cool!
let mut type_registry = TypeRegistry::default();
type_registry.register::<MyType>();

// The #[reflect] attribute we put on our DoThing trait generated a new `ReflectDoThing` struct, which implements TypeData.
// This was added to MyType's TypeRegistration.
let reflect_do_thing = type_registry
    .get_type_data::<ReflectDoThing>(reflect_value.type_id())
    .unwrap();

// We can use this generated type to convert our `&dyn Reflect` reference to a `&dyn DoThing` reference
let my_trait: &dyn DoThing = reflect_do_thing.get(&*reflect_value).unwrap();

// Which means we can now call do_thing(). Magic!
println!("{}", my_trait.do_thing());

// This works because the #[reflect(MyTrait)] we put on MyType informed the Reflect derive to insert a new instance
// of ReflectDoThing into MyType's registration. The instance knows how to cast &dyn Reflect to &dyn DoThing, because it
// knows that &dyn Reflect should first be downcasted to &MyType, which can then be safely casted to &dyn DoThing

为什么要这样做?

Rust的全部意义在于静态安全性!为什么要构建一些使其容易丢弃所有内容的工具?

  • 一些问题是固有的动态问题(脚本、某些类型的序列化和反序列化)
  • 有时动态方式更容易
  • 有时动态方式可以减少用户派生大量特质的负担(这是Bevy项目的一个主要动机)

依赖关系

~4–6.5MB
~125K SLoC